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Tech CEOs made bold predictions… 
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Jan 2025 Mar 2025

Meta Engineering headcount increased 11% year-over-year1

 1) Source: LinkedIn

How close are we to replacing 
software engineers with AI?
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Time-series cross-sectional study on software engineering 
productivity
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Cross-SectionalTime-Series

Git History 600+ Companies
100k+ Software Engineers

… 2023 2024 2025

Historical data

Enterprise Mid-Size Startup
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What we’ll cover

1 Limitations of Existing Productivity Metrics

2 Our Methodology: Panel of Experts

3 Case Study: Higher PR Counts, Lower Quality

4 Results: Impact of AI on Developer Productivity
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Existing metrics used to measure the impact of AI on engineering 
productivity have limitations
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Commits / PRs

Greenfield Tasks Surveys

• Task size varies

• More tasks != more productivity

• Tasks to fix bugs introduced by AI

• AI is great at greenfield, boilerplate 
code

• Most of software engineering isn’t 
greenfield

• Ineffective measure of developer 
productivity

• Perception != reality

DORA Metrics

• Measure of CI/CD adoption or 
DevOps performance

• Not a measure of productivity

1

3

2

4
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Developers thought AI was speeding them up by 20%... but it 
actually slowed them down by 20%
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 Source: Becker, J., Rush, N., Barnes, E., Rein, D. (2025). Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity. arXiv preprint arXiv:2507.09089.

16 Developers 246 Tasks

With AI

Without AI

Were deeply familiar with 
repos

Had little experience with 
AI coding assistants

AI helps less in familiar 
repos

More AI experience = 
better results

Potential reasons

Participants…

Surveys can‘t accurately estimate 
AI productivity impact
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Our model automates human code evaluations at scale
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Panel of 10-15 
Independent Experts

Engineer Writes Code

Our Model

Is evaluated 
by

Our model 
automates 
human code 
evaluations

Slow

Expensive

Not scalable

Fast

Affordable

Scalable

Output 
Evaluation

Output 
Evaluation

Quality / Maintainability

Complexity

Implementation Time

r = >0.851

Exceptional 
Correlation

Imagine having a panel of experts 
evaluate every code commit

 1) Significant improvements in correlation & ICC2K achieved since publishing “Predicting Expert Evaluations in Software Code Reviews”
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Our model quantitatively evaluates software engineering output 
by analyzing the source code changes of every commit

9

Git Repository Model Output 
Dashboard

Quantifies 
changes to 

replicate a panel 
of experts

Combines with Git 
metadata to form 

an output & 
quality metric

Analyzes the 
source code 

changes of every 
commit

1 2 3

A B C

Live Dashboard in 
Research Portal
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Adopting AI increased PRs by 14%... but more PRs doesn’t mean 
better
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Reviewer Burden

Smaller / Simpler 
PRs

Ignores Quality

Case Study

PR Count Limitations
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Adopting AI decreased Code Quality by 9% and increased 
variance by 3.6x
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-9% Decrease in Code Quality 3.6x Increase in VarianceWorse Quality More Erratic 
Quality

Case Study
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Adopting AI didn’t increase “effective output” and increased 
rework by 2.6x
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5,726

Post-AIPre-AI

5,791
516

+1
%

Post-AIPre-AI

2.6
x

p < 0.01

Effective Output

Rework

Not lines of code, but our metric (replicates a panel of human experts)

Case Study
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Adopting AI didn’t yield positive results for this company…
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Pull Requests (PRs)

+13.6% Increase

Inconclusive
More PRs =/= better

Code Quality

-9% Decrease

Problematic

Effective Output
(our metric)

+1% Increase

No meaningful change

Case Study

Is this a failed AI coding 
assistant pilot?

AI Impact on Productivity - Metrics Summary

Rework

2.6x Increase

Problematic
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Enterprise AI adoption rates are declining
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 Note: Data is six-survey moving average. The survey is conducted biweekly. Sources: US Census Bureau, Macrobond, Apollo Global Management Chief Economist

Likely understated 
adoption, but focus on 

downward trend
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Fear-driven AI investment without the right metrics leads to 
wasteful experimentation and failure
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1) MIT NANDA, The GenAI Divide, State of AI in Business (2025); 2) Thinking influenced by "Beware the AI Experimentation Trap" (2025, Nathan Furr, Andrew Shipilov)

• AI headlines trigger 
organizational FOMO

• “Automate or be 
automated”

Fear-Driven Entry

1

• Rush to adopt AI

Investment

2

• Experimentation 
without measurement2

• Current metrics don’t 
cut it

• “95% of AI initiatives 
fail to produce ROI”1

Measurement Void

3 • Miss on future value

Abandon AI

Option A

Let AI run wild

Option B

• Waste resources on 
unfocused experiments



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 17
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4 Results: Impact of AI on Developer Productivity
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AI delivers larger engineering productivity gains on easy tasks 
and greenfield projects
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Data as of Q1 2025
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AI boosts productivity by 10–25% in popular languages, but can 
decrease productivity in niche languages

Lo
w

H
ig

h
 Ta

sk
 C

om
pl

ex
ity

 Language PopularityLow High

0-5%
Limited AI support for niche 

languages

(-5)-5%
Poor training on legacy 

languages

+20-25%
Abundant data and model 

tuning

+10-15%
Complex tasks require human 

judgment

e.g. COBOL, Haskell, 
Elixir e.g. Python, Java

Software Engineering Productivity Increases from AI Use
Orientative Guidelines Based on data from 

100s of companies
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AI model coding performance drops with context length
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Source: Modarressi A., Deilamsalehy H., Dernoncourt F., Bui T., Rossi R., Yoon S., & Schütze H. (2025). NOLIMA: Long-Context Evaluation Beyond Literal 
Matching. arXiv preprint arXiv:2502.05167 v2, 26 March 2025.

Model Context 
Window (K)

GPT-4o 128

GPT-4o mini 128

Llama 3.3 70B 128

Llama 3.1 405B 128

Gemini 1.5 Pro 2,000

Gemini 1.5 Flash 1,000

Claude 3.5 Sonnet 200

50% performance 
loss at 32k token 

context length
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Teams that master AI are accelerating their productivity gains, 
widening the gap with laggards
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April 2023
4.8% Q1 – Q3 

difference

July 2025
19% Q1 – Q3 

difference

Widening Gap: 
4x increase

DiD Covariate Balance < 0.25
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“The rich get richer” – successful early AI adopters might 
compound their gains while strugglers could fall further behind

22

Illustrative & Not 
Scientific

10x Gap
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Companies are faced with 3 choices…
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Reduce Engineering 
Headcount

Freeze Headcount

 Deploy AI w/o Control & 
Measurement

Deploy AI

Disciplined ROI, 
Measurement, Learning

• Demand for software will 
explode

• Won’t be able to keep up

• Recipe for failure
• People resist new tools 

– learning curve

• Learning how to deploy 
& use AI takes time

• Must champion a 
learning culture

• Hard to leapfrog from 
bottom quartile to top

1 2 3
Replace Everyone Spray AI & Pray Good Business Acumen

Most companies currently
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What are top-quartile teams doing differently?
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AI in Every Stage Multiple Parallel 
AI Agents

Rigorous Measurement 
& A/B Testing

• Not just IDE1, but across 
SDLC2

• e.g. CI/CD3, Testing, 
QA4

• Don’t just prompt your 
AI agent and sit there 
watching it think

• Problem: context 
switching is hard

• Measure AI 
deployments just like 
any other part of the 
business

• Turn AI deployments 
into scientific 
experiments 

1

1) Integrated Development Environment; 2) Software Development Life Cycle; 3) Continuous Integration / Continuous Delivery; 4) Quality Assurance 

2 3

Most people currently
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Q: How close are we to replacing 
software engineers with AI?

A: Not very close
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softwareengineeringproductivity.stanford.edu

 Yegor 
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Would you like similar 
insights for your company?

Participate in our 
Research

Live Dashboard in 
Research Portal

Sign up at

mailto:ydebl@stanford.edu
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Appendix

27
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Self-assessment surveys are an inaccurate way to measure 
developer productivity

28

 We surveyed 43 software engineers from a statistically representative sample, asking them to rate their productivity on a scale from 0 to 100 in 5-percentile increments, relative to the global average over the past year. We 
then compared these self-assessments with their actual performance, recorded over the same period, and rounded to the nearest 5 percentile.

Self-assessment surveys (perceived 
productivity) are an ineffective predictor of 

productivity

People misjudge their productivity by ~30 
percentile points

Only 1 in 3 people estimated their 
productivity within one quartile

Surveys are valuable for understanding 
employee satisfaction and morale

0.17
Correlation (r)

0.03
R2

Measured
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Greenfield projects gain 30–35% on simple tasks and 10–15% on 
complex ones, versus 15–20% and 5–10% in brownfield projects

Interquartile 
Range
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Greenfield projects gain 30–35% on simple tasks and 10–15% on 
complex ones, versus 15–20% and 5–10% in brownfield projects

Lo
w

H
ig

h
 Ta

sk
 C

om
pl

ex
ity

 Project MaturityGreenfield Brownfield

+35-40%
These tasks are often repetitive 

and well-defined

+10-15%
Complex tasks require deeper 

human insight

+15-20%
Legacy projects still benefit on 

simpler tasks

+0-10%
Constrained by outdated code 

& intricate dependencies

Software Engineering Productivity Increases from AI Use
Orientative Guidelines
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As codebase size increases, productivity gain from AI decreases
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Context Window Limitations

Complexity

Signal:Noise Ratio

• Performance gains decrease 
with larger context windows 

• Dependencies

• Domain-specific logic

• Large codebases have more 
noise that can mislead the 
model

Illustrative
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The difference between Output and Outcomes in Software Engineering
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Output Outcomes

Tangible work produced by engineers

Velocity, building things right

Business results that stem from 
building the right things

Feature prioritization
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Measuring both output and outcomes is necessary to achieve a 
high-performing software org
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 Business outcomes
Poor Good

• High-performing team
• Building the wrong things
Poor business outcomes regardless 
of team performance

• High-performing team
• Building the right things
Can only get to this quadrant if you 
measure both

• Low-performing team
• Building the right things
Strong market demand leads to 
success despite quality & uptime 
issues

• Low-performing team
• Building the wrong things

2

1

4

3

1 Problematic

2 High output alone doesn't 
guarantee success; it needs to be 
aligned with building the right things

3 Room for improvement in execution

4 Best teams optimize both output 
and outcomes

Need to measure both 
output & outcomes
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Our research focuses on output:

Easier to gather 
objective & 
comparable data 
across orgs

1

Product prioritization 
frameworks exist to 
drive “building the right 
things”

2

All else equal, high 
output is better than 
low output

3
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Industry Benchmark:
Performance

35

Software Engineering Performance Benchmark

Team Overall Senior Mid Junior

Pro
duc
t A

Frontend

Backend

Pro
duc
t B

Frontend

Backend

Data

Industry SaaS & Web Company 
Size Medium

Industry Benchmark: Software Engineering Output

Top 25% 3rd Quartile 2nd Quartile Bottom 25%

1

Impact of Code 
Contributions

Avg. # Team Members

∑
For a given time period:

Using our model based 
on research conducted 
at Stanford

Analyze software engineering performance

Benchmark against similar teams 

1

2
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Industry Benchmark:
Cost Efficiency
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Software Engineering Cost Efficiency Benchmark

Team Overall Senior Mid Junior

Pro
duc
t A

Frontend

Backend

Pro
duc
t B

Frontend

Backend

Data

Top 25% 3rd Quartile 2nd Quartile Bottom 25%

Industry SaaS & Web Company 
Size Medium

Analyze results & make data-driven decisions

2

Impact of Code 
Contributions

Avg. Cost of Team

∑
For a given time period:

Calculate cost efficiency

Benchmark against similar teams 

1

2

Using our model based 
on research conducted 
at Stanford

Industry Company Size

Location Agnostic

Tech Stack


