Will Al Replace Software Engineers?

Our 100k-Engineer Study Says... Not So Fast

Yegor Denisov-Blanch Software Engineering Productivity Research Group Stanford University

Tech CEOs made bold predictions...

Jan 2025

Mar 2025

≅ Forbes

Zuckerberg Says Al Will Replace Mid-Level Engineers Soon

Meta Engineering headcount increased 11% year-over-year¹

BUSINESS INSIDER

Anthropic's CEO says that in 3 to 6 months, Al will be writing 90% of code

How close are we to replacing software engineers with AI?

1) Source: LinkedIn

Time-series cross-sectional study on software engineering productivity

What we'll cover

- 1 Limitations of Existing Productivity Metrics
- 2 Our Methodology: Panel of Experts
- Case Study: Higher PR Counts, Lower Quality
- 4 Results: Impact of AI on Developer Productivity

Existing metrics used to measure the impact of Al on engineering productivity have limitations

Commits / PRs

- Task size varies
- More tasks != more productivity
- Tasks to fix bugs introduced by AI

Greenfield Tasks

- Al is great at greenfield, boilerplate code
- Most of software engineering isn't greenfield

DORA Metrics

- Measure of CI/CD adoption or DevOps performance
- Not a measure of productivity

Surveys

- Ineffective measure of developer productivity
- Perception != reality

Developers thought AI was speeding them up by 20%... but it actually slowed them down by 20%

Potential reasons

Participants...

Had little experience with Al coding assistants

Al helps less in familiar repos

More Al experience = better results

Surveys can't accurately estimate Al productivity impact

Source: Becker, J., Rush, N., Barnes, E., Rein, D. (2025). Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity. arXiv preprint arXiv:2507.09089.

What we'll cover

- 1 Limitations of Existing Productivity Metrics
- 2 Our Methodology: Panel of Experts
- 3 Case Study: Higher PR Counts, Lower Quality
- 4 Results: Impact of AI on Developer Productivity

Our model automates human code evaluations at scale

1) Significant improvements in correlation & ICC2K achieved since publishing "Predicting Expert Evaluations in Software Code Reviews"

Our model quantitatively evaluates software engineering output by analyzing the source code changes of every commit

Quality Score

What we'll cover

- 1 Limitations of Existing Productivity Metrics
- 2 Our Methodology: Panel of Experts
- 3 Case Study: Higher PR Counts, Lower Quality
- 4 Results: Impact of AI on Developer Productivity

Adopting Al increased PRs by 14%... but more PRs doesn't mean better

Adopting AI decreased Code Quality by 9% and increased variance by 3.6x

Adopting Al didn't increase "effective output" and increased

rework by 2.6x

Monthly Engineering Output Breakdown: Pre-Al vs Post-Al

Rework

Pre-Al

Not lines of code, but our metric (replicates a panel of human experts)

Post-Al

Adopting Al didn't yield positive results for this company...

Al Impact on Productivity - Metrics Summary

Pull Requests (PRs)

+13.6% Increase

Inconclusive
More PRs =/= better

Code Quality

-9% Decrease

Problematic

Effective Output (our metric)

▶ +1% Increase

No meaningful change

Rework

▼ 2.6x Increase

Problematic

Is this a failed AI coding assistant pilot?

Enterprise Al adoption rates are declining

Likely understated adoption, but focus on downward trend

Note: Data is six-survey moving average. The survey is conducted biweekly. Sources: US Census Bureau, Macrobond, Apollo Global Management Chief Economist

Fear-driven Al investment without the right metrics leads to wasteful experimentation and failure

1) MIT NANDA, The GenAl Divide, State of Al in Business (2025); 2) Thinking influenced by "Beware the Al Experimentation Trap" (2025, Nathan Furr, Andrew Shipilov)

What we'll cover

- 1 Limitations of Existing Productivity Metrics
- 2 Our Methodology: Panel of Experts
- Case Study: Higher PR Counts, Lower Quality
- 4 Results: Impact of AI on Developer Productivity

Al delivers larger engineering productivity gains on easy tasks and greenfield projects

Al boosts productivity by 10-25% in popular languages, but can decrease productivity in niche languages

Al model coding performance drops with context length

Model	Context Window (K)
GPT-40	128
GPT-4o mini	128
Llama 3.3 70B	128
Llama 3.1 405B	128
Gemini 1.5 Pro	2,000
Gemini 1.5 Flash	1,000
Claude 3.5 Sonnet	200

Source: Modarressi A., Deilamsalehy H., Dernoncourt F., Bui T., Rossi R., Yoon S., & Schütze H. (2025). NOLIMA: Long-Context Evaluation Beyond Literal Matching. arXiv preprint arXiv:2502.05167 v2, 26 March 2025.

Teams that master AI are accelerating their productivity gains, widening the gap with laggards

Causal Impact of AI on Software Engineering Productivity:
Difference-in-Differences Analysis

"The rich get richer" – successful early Al adopters might compound their gains while strugglers could fall further behind

Illustrative AI Productivity Impact: Accelerating Divergence Through 2030

Companies are faced with 3 choices...

Replace Everyone

1

Reduce Engineering
Headcount

- Demand for software will explode
- Won't be able to keep up

Good Business Acumen

3

Deploy Al

Disciplined ROI, Measurement, Learning

- Learning how to deploy
 & use AI takes time
- Must champion a learning culture
- Hard to leapfrog from bottom quartile to top

What are top-quartile teams doing differently?

1 Al in Every Stage

- Not just IDE¹, but across SDLC²
- e.g. CI/CD³, Testing, QA⁴

Multiple Parallel Al Agents
 Don't just prompt your Al agent and sit there watching it think
 Problem: context switching is hard
 Most people currently

Rigorous Measurement & A/B Testing

- Measure Al deployments just like any other part of the business
- Turn AI deployments into scientific experiments

1) Integrated Development Environment; 2) Software Development Life Cycle; 3) Continuous Integration / Continuous Delivery; 4) Quality Assurance

Q: How close are we to replacing software engineers with Al?

A: Not very close

Would you like similar insights for your company?

Participate in our Research

Sign up at

softwareengineeringproductivity.stanford.edu

Acknowledgements: Simon Obstbaum, Michal Kosinski, Igor Ciobanu, Ion Manoil, Horatiu Mocian

Appendix

Self-assessment surveys are an inaccurate way to measure developer productivity

We surveyed 43 software engineers from a statistically representative sample, asking them to rate their productivity on a scale from 0 to 100 in 5-percentile increments, relative to the global average over the past year. We then compared these self-assessments with their actual performance, recorded over the same period, and rounded to the nearest 5 percentile.

Greenfield projects gain 30–35% on simple tasks and 10–15% on complex ones, versus 15–20% and 5–10% in brownfield projects

Impact of AI Coding Assistants on Developer Productivity (Mean ± IQR)

Research at Stanford University, Yegor Denisov-Blanch (ydebl@stanford.edu), softwareengineeringproductivity.stanford.edu

Greenfield projects gain 30–35% on simple tasks and 10–15% on complex ones, versus 15–20% and 5–10% in brownfield projects

Software Engineering Productivity Increases from AI Use
Orientative Guidelines

As codebase size increases, productivity gain from Al decreases

Context Window Limitations

 Performance gains decrease with larger context windows

Signal:Noise Ratio

 Large codebases have more noise that can mislead the model

Complexity

- Dependencies
- Domain-specific logic

The difference between Output and Outcomes in Software Engineering

Output

Tangible work produced by engineers

Velocity, building things right

Outcomes

Business results that stem from building the right things

Feature prioritization

Measuring both output and outcomes is necessary to achieve a high-performing software org

Our research focuses on output:

1

Easier to gather objective & comparable data across orgs

2

Product prioritization frameworks exist to drive "building the right things" 3

All else equal, high output is better than low output

Industry Benchmark: Performance

Industry Benchmark: Software Engineering Output

Industry

SaaS & Web

Company Size

Medium

Software Engineering Performance Benchmark							
	Team	Overall	Senior	Mid	Junior		
Pro duc t A	Frontend						
	Backend						
Pro duc t B	Frontend						
	Backend						
	Data						
7	Гор 25%	3 rd Quarti	ile 2 nd	^l Quartile	Bottom 25%		

Analyze software engineering performance

For a given time period:

Avg. # Team Members

Using our model based on research conducted at Stanford

2 Benchmark against similar teams

KDE - Normalized Software Engineering Output

Industry Benchmark: Cost Efficiency

Analyze results & make data-driven decisions

Industry SaaS & Web

Company Size

Medium

Software Engineering Cost Efficiency Benchmark						
	Team	Overall	Senior	Mid	Junior	
Pro duc t A	Frontend					
	Backend					
Pro duc t B	Frontend					
	Backend					
	Data					
	Гор 25%	3 rd Quarti	ile 2 nd	Quartile	Bottom 25%	

Calculate cost efficiency For a given time period: Using our model based Impact of Code on research conducted Contributions at Stanford Avg. Cost of Team Benchmark against similar teams **Industry Company Size Tech Stack Location Agnostic**