
aiconference.com

Will AI Replace 
Software Engineers?
Our 100k-Engineer Study Says… Not So Fast
Yegor Denisov-Blanch
Software Engineering Productivity Research Group
Stanford University



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Tech CEOs made bold predictions… 

2

Jan 2025 Mar 2025

Meta Engineering headcount increased 11% year-over-year1

 1) Source: LinkedIn

How close are we to replacing 
software engineers with AI?



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Time-series cross-sectional study on software engineering 
productivity

3

Cross-SectionalTime-Series

Git History 600+ Companies
100k+ Software Engineers

… 2023 2024 2025

Historical data

Enterprise Mid-Size Startup



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 4

What we’ll cover

1 Limitations of Existing Productivity Metrics

2 Our Methodology: Panel of Experts

3 Case Study: Higher PR Counts, Lower Quality

4 Results: Impact of AI on Developer Productivity



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Existing metrics used to measure the impact of AI on engineering 
productivity have limitations

5

Commits / PRs

Greenfield Tasks Surveys

• Task size varies

• More tasks != more productivity

• Tasks to fix bugs introduced by AI

• AI is great at greenfield, boilerplate 
code

• Most of software engineering isn’t 
greenfield

• Ineffective measure of developer 
productivity

• Perception != reality

DORA Metrics

• Measure of CI/CD adoption or 
DevOps performance

• Not a measure of productivity

1

3

2

4



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Developers thought AI was speeding them up by 20%... but it 
actually slowed them down by 20%

6

 Source: Becker, J., Rush, N., Barnes, E., Rein, D. (2025). Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity. arXiv preprint arXiv:2507.09089.

16 Developers 246 Tasks

With AI

Without AI

Were deeply familiar with 
repos

Had little experience with 
AI coding assistants

AI helps less in familiar 
repos

More AI experience = 
better results

Potential reasons

Participants…

Surveys can‘t accurately estimate 
AI productivity impact



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 7

What we’ll cover

1 Limitations of Existing Productivity Metrics

2 Our Methodology: Panel of Experts

3 Case Study: Higher PR Counts, Lower Quality

4 Results: Impact of AI on Developer Productivity



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Our model automates human code evaluations at scale

8

Panel of 10-15 
Independent Experts

Engineer Writes Code

Our Model

Is evaluated 
by

Our model 
automates 
human code 
evaluations

Slow

Expensive

Not scalable

Fast

Affordable

Scalable

Output 
Evaluation

Output 
Evaluation

Quality / Maintainability

Complexity

Implementation Time

r = >0.851

Exceptional 
Correlation

Imagine having a panel of experts 
evaluate every code commit

 1) Significant improvements in correlation & ICC2K achieved since publishing “Predicting Expert Evaluations in Software Code Reviews”



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Our model quantitatively evaluates software engineering output 
by analyzing the source code changes of every commit

9

Git Repository Model Output 
Dashboard

Quantifies 
changes to 

replicate a panel 
of experts

Combines with Git 
metadata to form 

an output & 
quality metric

Analyzes the 
source code 

changes of every 
commit

1 2 3

A B C

Live Dashboard in 
Research Portal



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 10

What we’ll cover

1 Limitations of Existing Productivity Metrics

2 Our Methodology: Panel of Experts

3 Case Study: Higher PR Counts, Lower Quality

4 Results: Impact of AI on Developer Productivity



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Adopting AI increased PRs by 14%... but more PRs doesn’t mean 
better

11

Reviewer Burden

Smaller / Simpler 
PRs

Ignores Quality

Case Study

PR Count Limitations



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Adopting AI decreased Code Quality by 9% and increased 
variance by 3.6x

12

-9% Decrease in Code Quality 3.6x Increase in VarianceWorse Quality More Erratic 
Quality

Case Study



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Adopting AI didn’t increase “effective output” and increased 
rework by 2.6x

13

5,726

Post-AIPre-AI

5,791
516

+1
%

Post-AIPre-AI

2.6
x

p < 0.01

Effective Output

Rework

Not lines of code, but our metric (replicates a panel of human experts)

Case Study



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Adopting AI didn’t yield positive results for this company…

14

Pull Requests (PRs)

+13.6% Increase

Inconclusive
More PRs =/= better

Code Quality

-9% Decrease

Problematic

Effective Output
(our metric)

+1% Increase

No meaningful change

Case Study

Is this a failed AI coding 
assistant pilot?

AI Impact on Productivity - Metrics Summary

Rework

2.6x Increase

Problematic



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Enterprise AI adoption rates are declining

15

 Note: Data is six-survey moving average. The survey is conducted biweekly. Sources: US Census Bureau, Macrobond, Apollo Global Management Chief Economist

Likely understated 
adoption, but focus on 

downward trend



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Fear-driven AI investment without the right metrics leads to 
wasteful experimentation and failure

16

1) MIT NANDA, The GenAI Divide, State of AI in Business (2025); 2) Thinking influenced by "Beware the AI Experimentation Trap" (2025, Nathan Furr, Andrew Shipilov)

• AI headlines trigger 
organizational FOMO

• “Automate or be 
automated”

Fear-Driven Entry

1

• Rush to adopt AI

Investment

2

• Experimentation 
without measurement2

• Current metrics don’t 
cut it

• “95% of AI initiatives 
fail to produce ROI”1

Measurement Void

3 • Miss on future value

Abandon AI

Option A

Let AI run wild

Option B

• Waste resources on 
unfocused experiments



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 17

What we’ll cover

1 Limitations of Existing Productivity Metrics

2 Our Methodology: Panel of Experts

3 Case Study: Higher PR Counts, Lower Quality

4 Results: Impact of AI on Developer Productivity



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

AI delivers larger engineering productivity gains on easy tasks 
and greenfield projects

18

Data as of Q1 2025



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 19

AI boosts productivity by 10–25% in popular languages, but can 
decrease productivity in niche languages

Lo
w

H
ig

h
 Ta

sk
 C

om
pl

ex
ity

 Language PopularityLow High

0-5%
Limited AI support for niche 

languages

(-5)-5%
Poor training on legacy 

languages

+20-25%
Abundant data and model 

tuning

+10-15%
Complex tasks require human 

judgment

e.g. COBOL, Haskell, 
Elixir e.g. Python, Java

Software Engineering Productivity Increases from AI Use
Orientative Guidelines Based on data from 

100s of companies



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

AI model coding performance drops with context length

20

Source: Modarressi A., Deilamsalehy H., Dernoncourt F., Bui T., Rossi R., Yoon S., & Schütze H. (2025). NOLIMA: Long-Context Evaluation Beyond Literal 
Matching. arXiv preprint arXiv:2502.05167 v2, 26 March 2025.

Model Context 
Window (K)

GPT-4o 128

GPT-4o mini 128

Llama 3.3 70B 128

Llama 3.1 405B 128

Gemini 1.5 Pro 2,000

Gemini 1.5 Flash 1,000

Claude 3.5 Sonnet 200

50% performance 
loss at 32k token 

context length



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Teams that master AI are accelerating their productivity gains, 
widening the gap with laggards

21

April 2023
4.8% Q1 – Q3 

difference

July 2025
19% Q1 – Q3 

difference

Widening Gap: 
4x increase

DiD Covariate Balance < 0.25



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

“The rich get richer” – successful early AI adopters might 
compound their gains while strugglers could fall further behind

22

Illustrative & Not 
Scientific

10x Gap



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Companies are faced with 3 choices…

23

Reduce Engineering 
Headcount

Freeze Headcount

 Deploy AI w/o Control & 
Measurement

Deploy AI

Disciplined ROI, 
Measurement, Learning

• Demand for software will 
explode

• Won’t be able to keep up

• Recipe for failure
• People resist new tools 

– learning curve

• Learning how to deploy 
& use AI takes time

• Must champion a 
learning culture

• Hard to leapfrog from 
bottom quartile to top

1 2 3
Replace Everyone Spray AI & Pray Good Business Acumen

Most companies currently



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

What are top-quartile teams doing differently?

24

AI in Every Stage Multiple Parallel 
AI Agents

Rigorous Measurement 
& A/B Testing

• Not just IDE1, but across 
SDLC2

• e.g. CI/CD3, Testing, 
QA4

• Don’t just prompt your 
AI agent and sit there 
watching it think

• Problem: context 
switching is hard

• Measure AI 
deployments just like 
any other part of the 
business

• Turn AI deployments 
into scientific 
experiments 

1

1) Integrated Development Environment; 2) Software Development Life Cycle; 3) Continuous Integration / Continuous Delivery; 4) Quality Assurance 

2 3

Most people currently



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 25

Q: How close are we to replacing 
software engineers with AI?

A: Not very close



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 26

softwareengineeringproductivity.stanford.edu

 Yegor 
Denisov-Blanch

ydebl@stanford.edu 

Acknowledgements: Simon Obstbaum, Michal Kosinski, Igor Ciobanu, Ion Manoil, Horatiu Mocian

Would you like similar 
insights for your company?

Participate in our 
Research

Live Dashboard in 
Research Portal

Sign up at

mailto:ydebl@stanford.edu


Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Appendix

27



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Self-assessment surveys are an inaccurate way to measure 
developer productivity

28

 We surveyed 43 software engineers from a statistically representative sample, asking them to rate their productivity on a scale from 0 to 100 in 5-percentile increments, relative to the global average over the past year. We 
then compared these self-assessments with their actual performance, recorded over the same period, and rounded to the nearest 5 percentile.

Self-assessment surveys (perceived 
productivity) are an ineffective predictor of 

productivity

People misjudge their productivity by ~30 
percentile points

Only 1 in 3 people estimated their 
productivity within one quartile

Surveys are valuable for understanding 
employee satisfaction and morale

0.17
Correlation (r)

0.03
R2

Measured



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 29

Greenfield projects gain 30–35% on simple tasks and 10–15% on 
complex ones, versus 15–20% and 5–10% in brownfield projects

Interquartile 
Range



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 30

Greenfield projects gain 30–35% on simple tasks and 10–15% on 
complex ones, versus 15–20% and 5–10% in brownfield projects

Lo
w

H
ig

h
 Ta

sk
 C

om
pl

ex
ity

 Project MaturityGreenfield Brownfield

+35-40%
These tasks are often repetitive 

and well-defined

+10-15%
Complex tasks require deeper 

human insight

+15-20%
Legacy projects still benefit on 

simpler tasks

+0-10%
Constrained by outdated code 

& intricate dependencies

Software Engineering Productivity Increases from AI Use
Orientative Guidelines



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

As codebase size increases, productivity gain from AI decreases

31

Context Window Limitations

Complexity

Signal:Noise Ratio

• Performance gains decrease 
with larger context windows 

• Dependencies

• Domain-specific logic

• Large codebases have more 
noise that can mislead the 
model

Illustrative



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

The difference between Output and Outcomes in Software Engineering

32

Output Outcomes

Tangible work produced by engineers

Velocity, building things right

Business results that stem from 
building the right things

Feature prioritization



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Measuring both output and outcomes is necessary to achieve a 
high-performing software org

33

Lo
w

H
ig

h

 En
gi

ne
er

in
g 

ou
tp

ut

 Business outcomes
Poor Good

• High-performing team
• Building the wrong things
Poor business outcomes regardless 
of team performance

• High-performing team
• Building the right things
Can only get to this quadrant if you 
measure both

• Low-performing team
• Building the right things
Strong market demand leads to 
success despite quality & uptime 
issues

• Low-performing team
• Building the wrong things

2

1

4

3

1 Problematic

2 High output alone doesn't 
guarantee success; it needs to be 
aligned with building the right things

3 Room for improvement in execution

4 Best teams optimize both output 
and outcomes

Need to measure both 
output & outcomes



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu 34

Our research focuses on output:

Easier to gather 
objective & 
comparable data 
across orgs

1

Product prioritization 
frameworks exist to 
drive “building the right 
things”

2

All else equal, high 
output is better than 
low output

3



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Industry Benchmark:
Performance

35

Software Engineering Performance Benchmark

Team Overall Senior Mid Junior

Pro
duc
t A

Frontend

Backend

Pro
duc
t B

Frontend

Backend

Data

Industry SaaS & Web Company 
Size Medium

Industry Benchmark: Software Engineering Output

Top 25% 3rd Quartile 2nd Quartile Bottom 25%

1

Impact of Code 
Contributions

Avg. # Team Members

∑
For a given time period:

Using our model based 
on research conducted 
at Stanford

Analyze software engineering performance

Benchmark against similar teams 

1

2



Yegor Denisov-Blanch | softwareengineeringproductivity.stanford.edu

Industry Benchmark:
Cost Efficiency

36

Software Engineering Cost Efficiency Benchmark

Team Overall Senior Mid Junior

Pro
duc
t A

Frontend

Backend

Pro
duc
t B

Frontend

Backend

Data

Top 25% 3rd Quartile 2nd Quartile Bottom 25%

Industry SaaS & Web Company 
Size Medium

Analyze results & make data-driven decisions

2

Impact of Code 
Contributions

Avg. Cost of Team

∑
For a given time period:

Calculate cost efficiency

Benchmark against similar teams 

1

2

Using our model based 
on research conducted 
at Stanford

Industry Company Size

Location Agnostic

Tech Stack


