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Where We are Today

● Overall regulatory landscape is evolving, but shift towards 
subjective content standards

● Path dependency – did not get here in a vacuum

● Scalable capabilities of AI content creation can create fear of 
drowning out other competing perspectives
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What are these Regulations About

● US: EO 14319
○ “Truth Seeking”
○ “Ideological Neutrality”
○ “[D]isclosure of the LLM's system prompt, specifications, evaluations, or other relevant 

documentation”
● EU: EU AI Act Articles 53 & 55

○ Measures to detect the unsuitability of data sources and methods to detect biases
○ Model evaluation using standardized protocols and tools reflecting the state of the art

● Others
○ South Korea: New, so still TBD, but AI ethics principles as prescribed by Presidential Decree
○ China: Respect social morality and ethics; adhere to the core values of socialism; not 

damaging the image of the country; not undermining national unity and social stability
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Why this Matters

● Subjective standards often harder to comply with 
○ May require more frequent review
○ Opens door to selective regulatory enforcement

● Moving towards to suitability on  jurisdiction-by-jurisdiction basis?
○ Moving towards fragmentation?
○ Increased costs and complexity

● Public opinion can quickly become the story
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Fundamental Challenges 
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1. How to effectively constrain the system’s output?

2. How do we know we are doing a good job?

3. How does this change for criteria with loose definitions?
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Taxonomy of Constraints
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Not the whole universe, but to keep this practical, will stick to less 
esoteric approaches 
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Constraints - Basic Approaches
Everyone starts here because of 
immediate impact and ease of 
implementation.
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● Content Filters: Don’t include “X” 
○ Typically outputs, but can be inputs
○ Limits: Many (whack-a-mole, coded language, 

lack of context awareness, etc.)
● System Prompts: Tell system how to act

○ Limits: Many (unpredictable, context 
limitations, potential for bypass, etc.)
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Could you defend if published?
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Constraints - Training Data
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● May not be a lever you can pull . . .
● FM providers are focused on this
● Other jurisdictions have provided 

models for review
● Best practices still being developed, 

both from a practical standpoint, as 
well as from a legal perspective
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Constraints - Fine Tuning
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● Improves performance, but mixed (and 
potentially unpredictable) results on safety

● Performance: 👍
○ Improve domain expertise
○ Adhere to certain style/tone
○ Reduce certain hallucinations

● Safety: 󰤇
○ Can lead to degradation of existing 

model alignment or guardrails
○ See this HAI Policy Brief for more 

● Fine tune for performance, still need (at least) 
the same safety checks post-tuning
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https://hai.stanford.edu/assets/files/2024-01/Policy-Brief-Safety-Risks-Customizing-Foundation-Models-Fine-Tuning.pdf
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Constraints - Architecture
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Includes both simple and complex 
approaches

● System Parameters
○ Temperature, top-k, top-p, etc.
○ Limits: Reduces utility (creativity, nuance, etc.)

● Critical Review: Various approaches
○ Reflection, pairwise comparison, etc.
○ Limits: Increase overhead (latency, inference), 

push towards norms; just problem-shifting to 
the reviewer?
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Who is the right stakeholder to manage 
critical review? 
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Taxonomy of Measures
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Red Teaming

Human 
Evaluations

Benchmarks

Automated 
Evaluations

Again, not the whole universe, but to keep this practical, will stick to 
less esoteric approaches 
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Measures - Red Teaming
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● Can mean various things, but typically IDs 
vulnerabilities by designing prompts to 
avoid controls (“jailbreak”)
○ Many parallels to the red teaming in the 

security space
○ Datasets of red team prompts available

● But breaking out of controls does not 
measure controls effectiveness when 
working
○ Two different problems
○ To carry forward the security analogy, “Who 

is doing blue/purple teaming”?
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Measures Benchmarks
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● Measuring performance of model against 
pre–defined dataset

● Can test different things:
○ Knowledge/Reasoning (e.g., MMLU, 

BIG-bench)
○ Safety (e.g., AdvBench, TruthfulQA)

● Various ways to implement:
○ Refusal to answer (e.g., OR-Bench)
○ Question answering (e.g., BBQ)

● But, see, Goodhart’s Law
● Also, not tailored – why most useful for general 

purpose FMs

Red Teaming

Human 
Evaluations

Benchmarks

Automated 
Evaluations



www.aiconference.com   |

Measures - Human Evaluations
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● Comparative human evaluations 
(i.e., which do humans prefer?)

● Most well known: LMArena (formerly 
Chatbot Arena)

● Who are the scorers? What are 
they evaluating on? What is their 
take on the subjective?

● If not tailored, then most useful for 
general purpose FMs
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Measures - Automated Evaluations
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● Use automated technology to 
scale evaluations 

● Some of the same issues as 
human evaluations, but some 
different as well – how to bridge 
the best of bost worlds

● Technical hurdles to 
implementing with consistency

● If this seems interesting, then 
let’s talk!
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Role of Subjectivity

● Who is doing the measuring
○ Human – who is scoring; inherent preferences
○ LLM – also contain inherent preferences
○ Question: When would each preferable?

● What happens when the goal posts move?
○ Can be explicit (e.g., new guidance or regulatory action)
○ Or implicit (e.g., change in the zeitgeist)
○ Who is watching the goal posts?
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Relevant Terms from EO 14319
● Impartiality: How to measure?

○ Truthful
○ Historically Accurate
○ Objectivity
○ Neutral
○ Non-partisan
○ Acknowledge Uncertainty

● Actions: Limits on constraints?
○ Do not manipulate responses in favor of 

ideological dogmas
○ Not intentionally encode partisan or 

ideological judgments (unless prompted by 
or accessible to end user)
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Impartiality - How to Measure
● Red Teaming: Appropriate expertise to identify 

impartiality?
○ How to align between client and red team?

● Benchmarks: Are “correct” answers actually 
impartial?
○ Build better benchmarks for impartiality?

● Human Evaluations: What biases are the human 
evaluators bringing? 
○ Statistical techniques to better ensure representative 

evaluators? Want to work on this – let’s connect!
● Automated Evaluations: Is default FM behavior 

impartial to begin with?
○ If not, how to build evaluators without that bias?
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Actions - Limits on Constraints

● Content Filters: 
○ Are filters an encoding of ideological judgement?
○ Would need to be highly dynamic to keep up. 

● System Prompts: 
○ Relies on default tendencies of FM
○ Willing to expose? If not, is it “accessible” to end user?

● Data: Where can you source impartial data?
○ Some clearly better than others, but no bright lines.
○ Remove the worst and hope for the best?

● Architecture:  
○ MoE to represent multiple sides of a position?
○ But of course, inference and latency . . .
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Matching Evaluations to the Moment
● How to assess definitions?

○ Conservative vs aggressive readings? 
○ In which direction?
○ When to re-evaluate?

● Really a variation on an old problem (regulatory interpretation) but 
what’s different:
○ Technical nature of systems on which being implemented
○ Public-facing nature of many LLMs

● Who is best positioned to determine this for an organization:
○ Data scientists? Lawyers? PR?
○ Internal vs. External?
○ How to incorporate multiple stakeholders’ input into these constraints and measures?

● A data scientist and a lawyer walk into a bar (link)
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https://www.luminos.ai/blog/a-data-scientist-and-a-lawyer-walk-into-two-different-bars
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