: THE Al ‘
Y 4 —— | ByteDance | Seed

verl: Flexible and Efficient
Reinforcement Learning Library for
LLM Reasoning and Tool-Calling

Presenter: Hongpeng Guo, ByteDance Seed

Why is large-scale RL important?

Systems challenges of large scale RL

Why verl for LLM RL?

Recent updates & Roadmap

Why is Large-Scale RL
Important?

Large-Scale RL for Reasoning and Agents

Learning to reason with large-scale RL greatly boosts the performance of LLMs

Model Large-Scale AIME MATH GPQA Code

ode RL? 2024 500 Diamond Forces
GPT-40 (OpenAl 2024) X 44.6 60.3 50.6 >11.0%
01 (OpenAl 2024) 74.4 94.8 77.3 >89.0%

Deep research ... was trained on real-world tasks requiring browser
and Python tool use, using the same reinforcement learning methods
behind OpenAl o1, our first reasoning model.

— OpenAl Deep Research Blog, 2025

https://tongyx361.github.io/blogs/posts/verl-intro/
https://tongyx361.github.io/blogs/posts/verl-intro/

Why is Large-Scale RL
System Challenging?

Diverse RL algorithms as Complex Dataflows

Reference
Model
Reward
Model

Reference

Model Trained

Models

PPO
Reward Ty Group A,
— Model Computation

Frozen
Models

L[

Reinforcement learning can be modelled as complex dataflow graph with:
e multiple models:
o Policy model (actor): the LLM to train
o Reward model: provides immediate rewards
o Reference model: makes sure the updated policy model not to deviate too far with KL
o Value model (critic): predicts the long term value of the state
e multiple workloads: generation, inference, training, weight sync

(Schaarschmidt et al. 2019; Liang et al. 2021; Sheng et al. 2025

https://fireworks.ai/blog/reinforcement-learning-with-verifiable-reward

http://localhost:4153/posts/verl-intro/index.html?quartoPreviewReqId=1748597939088&quartoPreviewThemeCategory=dark
http://localhost:4153/posts/verl-intro/index.html?quartoPreviewReqId=1748597939088&quartoPreviewThemeCategory=dark
http://localhost:4153/posts/verl-intro/index.html?quartoPreviewReqId=1748597939088&quartoPreviewThemeCategory=dark

RL with LLMs is Large-Scale Distributed Dataflow

each operator in the RL dataflow = a large-scale distributed computing workload

Inter-Node Intra-Node

(Dataflow Graph) (Large-Scale Distributed)

/ ' T A
! . Pipeline Parallel
N 1 ~~.
@
Intra-Node

- - _---.T»——"" .
age 1 [
Actor Critic ' i
(raining Training !) =,
@ Sy : & GPUO GPU8 GPU 16 GPU 24

Y
Pipeline Parallel

HybridFlow, Sheng et al., 2024

Why verl for RL with LLMs?

Flexible and Efficient!

Background: Single-Controller vs. Multi-Controller

Single-Controller (MPMD, flexible):
A centralized controller manages all the

workers, running different programs

[Ctrr

} (step k

D

Host

Dev

Host

Dev

Host

Dev

l.e., Tensorflow 1, Rllib, ...

Multi-Controller (SPMD, efficient):
Each worker has its own controller, running
the same program with different data

step K step k+1

Host

N N
Ctﬂl" \‘\‘ \‘ \ \‘ \‘

Dev | L X L
Ly L1 = A

Eﬁﬂ

Ctrlr /4/4 /(s /’ /’

Host - QOOO00D

l.e., PyTorch, JAX, ...

A
N\,

Pathways, Barham et al., 2022

New Paradigm: Hybrid-Controller!

multiple processes for

efficient nD parallel
»»»»»»»»»»»»»»»»»»»»»»»»»»» Single-Controller e P . .
a central process to control s Gptaon | training/serving execution
core algonthm IOg|C L Single Controller
Prompts + Responses Experlences)
|O actor critic O reference policy O reward model O cost model | E % H ; :
r.ﬁZ'IIIZIZI ':ZZII"ZZI,' f.'.'.'q,.'.'f_'_'_'_'.';i_'_'_'_'_'_'_' \mb Actor i
RV Critic - @ Crltlc . 'RM /RM E pmb pdat : .
Fwd Fwd Fwd / \Fwd Fwd : : Fwd / | Fwd
____'_'_"'_'_'_'_'_:'_'_'"_‘__'_'_'_‘ __ e u‘éﬁ‘é?e
;@) Tg:::f\g E ; - Training Trca:r:lzgi E é Reward % P H
"""" @pro T T oysaeriiE g ReMax X

e Hybrid-Controller = Single-Controller + N x Multi-Controller
e |n the hybrid-controller, a single-controller manages multiple multi-controllers to
process the dataflow

Flexibility in Programming: “Single-Controller”

Experience Preparation stage

for prompts in dataloader:

. Training stage # Stage 1: Generation
Generation stage
batch = actor.generate_sequences(prompts)
E’) pdats # Stage 2: Experience Preparation
urer batch = reward.compute_reward(batch)

Frompts e e = batch = reference.compute_log_prob(batch)
Reward—> batch = critic.compute_values(batch)
batch = compute_advantage(batch, "gae")

Experiences

Stage 3: Training
|O actor critic O reference policy reward model | critic. update critic(batch)
actor.update_actor(batch)

Programming interface based on the “single-controller” paradigm
RL algorithm core logic in a few lines of code!

e Diverse RL algorithms
supported: PPO, GRPO, RLOO, GSPO, PRIME, DAPO, etc.

HybridFlow, Sheng et al., 2024

https://github.com/volcengine/verl/blob/main/examples/ppo_trainer
https://github.com/volcengine/verl/blob/main/examples/grpo_trainer
https://github.com/volcengine/verl/blob/main/examples/rloo_trainer
https://github.com/volcengine/verl/blob/main/examples/remax_trainer
https://github.com/volcengine/verl/blob/main/recipe/prime
https://github.com/volcengine/verl/blob/main/recipe/dapo

Efficiency: “Multi-Controller”

verl is efficient for intra-operator with the “multi-controller” paradigm and features like:

Training Backends:

Generation Backends:

FSDP
FSDP2
Megatron

vLLM
SGLang

Parallelism Algorithms:

Data Parallelism

Tensor Parallelism

Pipeline Parallelism

Context / Sequence Parallelism
Expert Parallelism

Efficient Kernels:

Flash Attention 2

Torch Compile

Liger Kernel

Open-Source Community: Impactful and Inclusive

So far, verl has gained: Capabilities
VLM recipe: deep-eye

o 13.3k stars e LLM recipes: DAPO, retool

o 2.4k forks I i t
e 19k PRs mage/video suppor
e 360+ contributors - Large MoE

Multi-GPU LoRA
Waiting for your participation! « Sandbox/search tools

Recent Updates
& Roadmap

Approaching Agentic RL

Rollout
& Policy \
()
r LLM -—>[Reward]—'[Advantage]
(a) Text-based RL training Text:
Rollout with Interleaved Code Execution Code:
4{ 1 9& Policy LLM JM Interpreter
l l l Feedback: @8
Final Result: @B
] L
v t
[Code Sandbox

(b) ReTool RL training

ReTool, Feng et al., 2025

Async Multi-Turn Rollout with Tools

Trajectory o finishes,
start a new trajectory

Synchronous Rollout Initilize Runtime o Env Exec Initilize Runtime 2
LLM Gen LLM Gen LLM Gen Reward Calculation

Initilize Runtime 1 Env Exec Env Exec

Trajectory o finishes,
start a new trajectory

Initilize Runtime 0 LLM Gen poaa»cd LLM Gen Initilize Runtime 2 LLM Gen
Initilize Runtime 1 LLM Gen @Y \ANES IDNADECH LLM Gen Initilize Runtime 3

Trajectory 1 finishes,
start a new trajectory

Asynchronous Rollout

Reward Calculation

* Synchronous Engine: returns all the outputs in the batch at the same time -
* Asynchronous Server (rollout.mode=async): returns each output as soon as it is ready t & & 4

https://novasky-ai.notion.site/skyrl-v0

Token-in-token-out Agent Loop Interface

Given one prompt, run a user defined loop with multi-turn/tool calling trajectories.
Token ids are used for server generation input / output to avoid ambiguity.

class DemoLoop():
prompt_ids response_ids

async def (self, messages: 11, ...) —> AgentLoopOutput:

[user Jfassistant](tool J[assistant)[user](assistant] prompt_1as awalt . LOOp. (,
lambda: tokenizer. (messages, , tokenize)

[| o)
whiTe (prompt_idc num_turng):
response_mask response_ids = await .rollout_server. (

request_id=request_iu, prompti_ius=prompt_ids,

)

LLM prompt_ids response_ids
tool_response_ids await (response_ids)
prompt_ids tool_response_ids
/I\generate num_turns 1
response_mask
output (
prompt_ids=prompt_ids,
prompt — Agent Loop —> output response_ids=response_ids,
response_mask=response_mask,

num_turns=num_turns,
)

return output

Efficient RL with MoEs like DeepSeek-V3-671B

verl is working on supporting efficient RL training for MoE like DeepSeek-V3-
671B/Qwen3-235b, based on the following features:

Runnable with 96 H100 GPUs
Training: MoE models based on Megatron, ~0.12 MFU
Inference: Multi-node tensor parallel inference

Verified reward curve on orz57k & proprietary datasets from community
Planned: fp8 rollout, gpt-oss-120b (sglang PR #9379)

For more details, please check issue tracker #1033.

Credit to NVIDIA, Amazon, RedNote, etc

https://github.com/volcengine/verl/pull/708

Recent Roadmap

e Modular design: composable model engines with better abstraction

o Algorithm agnostic engine abstraction: FSDP2, Megatron, and more

e Partial rollout & fully-async training pipeline (AReal, Kimi, 2025)

e Rollout performance optimizations (fp8)
e Agentic RL recipes (e.g. SWE-bench)

e Efficient multimodal data transfer via references

Github roadmap issue tracker #2388.

https://github.com/volcengine/verl?tab=readme-ov-file

