

verl: Flexible and Efficient Reinforcement Learning Library for LLM Reasoning and Tool-Calling

Presenter: Hongpeng Guo, ByteDance Seed

Why is large-scale RL important?

Systems challenges of large scale RL

Why verl for LLM RL?

Recent updates & Roadmap

Why is Large-Scale RL Important?

Large-Scale RL for Reasoning and Agents

Learning to reason with large-scale RL greatly boosts the performance of LLMs

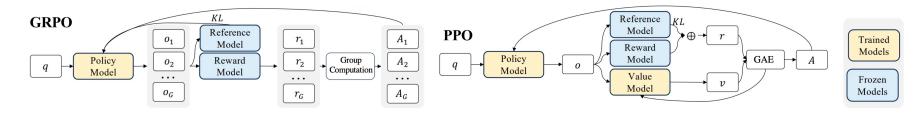
Model	Large-Scale RL?	AIME 2024	MATH 500	GPQA Diamond	Code Forces
GPT-4o (<u>OpenAl 2024</u>)	×	44.6	60.3	50.6	>11.0%
o1 (<u>OpenAl 2024</u>)	V	74.4	94.8	77.3	>89.0%

Deep research ... was trained on **real-world tasks requiring browser** and **Python tool use**, using **the same reinforcement learning methods behind OpenAl o1**, our first reasoning model.

System Challenging?

Why is Large-Scale RL

Diverse RL algorithms as Complex Dataflows

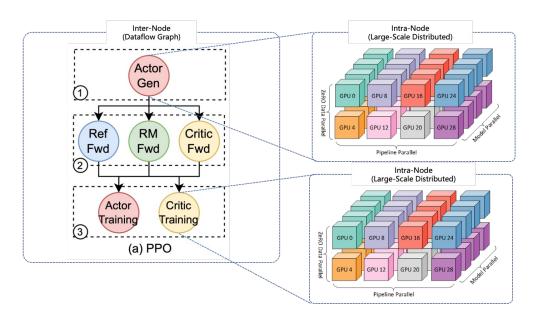


Reinforcement learning can be modelled as **complex dataflow graph** with:

- multiple models:
 - Policy model (actor): the LLM to train
 - Reward model: provides immediate rewards
 - Reference model: makes sure the updated policy model not to deviate too far with KL
 - Value model (critic): predicts the long term value of the state
- multiple workloads: generation, inference, training, weight sync

RL with LLMs is Large-Scale Distributed Dataflow

each **operator** in the RL dataflow = a large-scale **distributed** computing workload



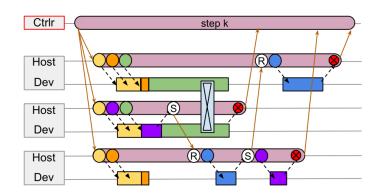
Why verl for RL with LLMs?

Flexible and Efficient!

Background: Single-Controller vs. Multi-Controller

Single-Controller (MPMD, flexible):

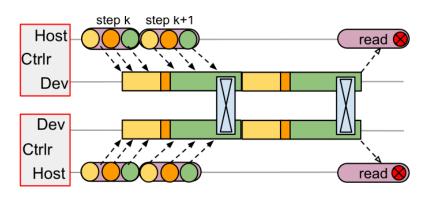
A centralized controller manages all the workers, running different programs



I.e., Tensorflow 1, RIlib, ...

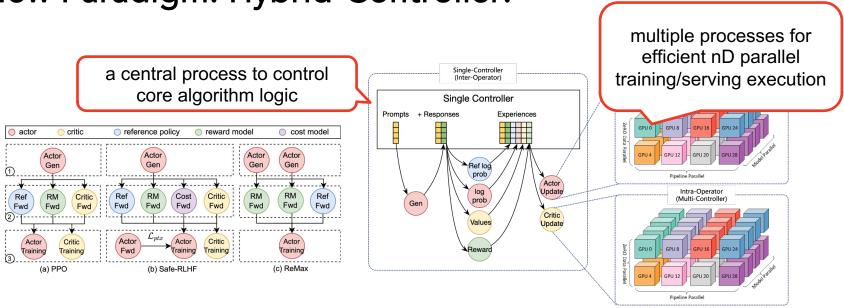
Multi-Controller (SPMD, efficient):

Each worker has its own controller, running the same program with different data



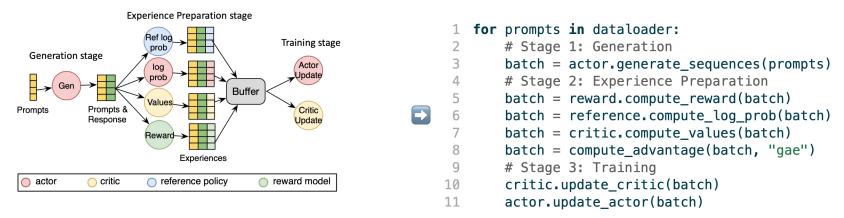
I.e., PyTorch, JAX, ...

New Paradigm: Hybrid-Controller!



- Hybrid-Controller = Single-Controller + N x Multi-Controller
- In the hybrid-controller, a single-controller manages multiple multi-controllers to process the dataflow

Flexibility in Programming: "Single-Controller"



- Programming interface based on the "single-controller" paradigm
- RL algorithm core logic in a few lines of code!
- Diverse RL algorithms supported: <u>PPO, GRPO, RLOO, GSPO, PRIME, DAPO, etc.</u>

Efficiency: "Multi-Controller"

verl is efficient for intra-operator with the "multi-controller" paradigm and features like:

Training Backends:

- FSDP
- FSDP2
- Megatron

Generation Backends:

- vLLM
- SGLang
- ...

Parallelism Algorithms:

- Data Parallelism
- Tensor Parallelism
- Pipeline Parallelism
- Context / Sequence Parallelism
- Expert Parallelism

Efficient Kernels:

- Flash Attention 2
- Torch Compile
- Liger Kernel
- ...

Open-Source Community: Impactful and Inclusive

So far, verl has gained:

- 13.3k stars
- 2.4k forks
- 1.9k PRs
- 360+ contributors

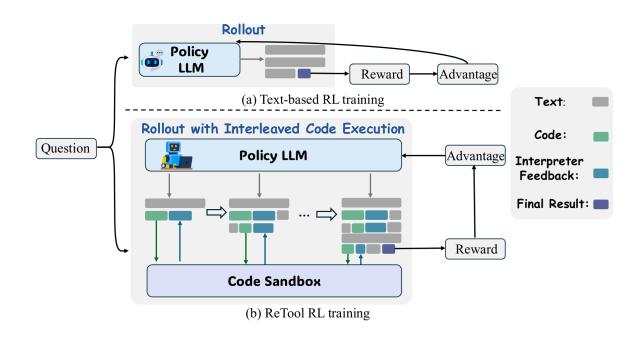
Waiting for your participation!

Capabilities

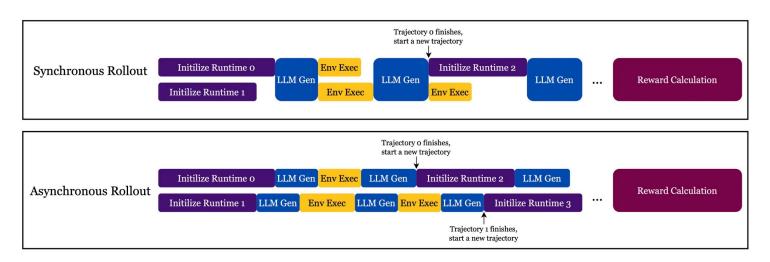
- VLM recipe: deep-eye
- LLM recipes: DAPO, retool
- Image/video support
- Large MoE
- Multi-GPU LoRA
- Sandbox/search tools

Recent Updates & Roadmap

Approaching Agentic RL



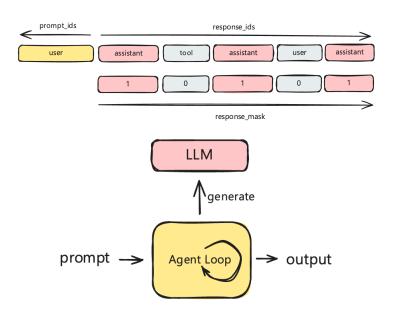
Async Multi-Turn Rollout with Tools



- Synchronous Engine: returns all the outputs in the batch at the same time

Token-in-token-out Agent Loop Interface

Given one prompt, run a user defined loop with multi-turn/tool calling trajectories. Token ids are used for server generation input / output to avoid ambiguity.



```
class DemoLoop(AgentLoopBase):
async def run(self, messages: list[dict[str, Any]], ...) -> AgentLoopOutput:
    prompt ids = await sett. Loop. run in executor(None,
        lambda: tokenizer.apply chat template(messages, ..., tokenize=True)
    num_turns = 0
    while not is_done(prompt_ids_ num turns):
        response_ids = await self.rollout_server.generate(
            request_id=request_id, prompt_ids=prompt_ids, ...
        prompt ids += response ids
        tool_response_ids = await call_tool(response_ids)
        prompt ids += tool response ids
        num_turns += 1
        response_mask += ...
        output = AgentLoopOutput(
            prompt_ids=prompt_ids,
            response_ids=response_ids,
            response_mask=response_mask,
            num turns=num turns,
        return output
```

Efficient RL with MoEs like DeepSeek-V3-671B

verl is working on supporting efficient RL training for **MoE like DeepSeek-V3-671B/Qwen3-235b**, based on the following features:

- Runnable with 96 H100 GPUs
- Training: MoE models based on Megatron, ~0.12 MFU
- Inference: **Multi-node** tensor parallel inference
- Verified reward curve on orz57k & proprietary datasets from community
- Planned: fp8 rollout, gpt-oss-120b (sglang PR #9379)

For more details, please check issue tracker #1033.

Recent Roadmap

- Modular design: composable model engines with better abstraction
 - o Algorithm agnostic engine abstraction: FSDP2, Megatron, and more
- Partial rollout & fully-async training pipeline (<u>AReal, Kimi, 2025</u>)
- Rollout performance optimizations (fp8)
- Agentic RL recipes (e.g. SWE-bench)
- Efficient multimodal data transfer via references

Github roadmap issue tracker #2388.

