
verl: Flexible and Efficient
Reinforcement Learning Library for

LLM Reasoning and Tool-Calling

Presenter: Hongpeng Guo, ByteDance Seed

Why is large-scale RL important?

Systems challenges of large scale RL

Why verl for LLM RL?

Recent updates & Roadmap

Why is Large-Scale RL
Important?

Large-Scale RL for Reasoning and Agents
Learning to reason with large-scale RL greatly boosts the performance of LLMs

Model Large-Scale
RL?

AIME
2024

MATH
500

GPQA
Diamond

Code
Forces

GPT-4o (OpenAI 2024) ❌ 44.6 60.3 50.6 >11.0%

o1 (OpenAI 2024) ✅ 74.4 94.8 77.3 >89.0%

Deep research … was trained on real-world tasks requiring browser
and Python tool use, using the same reinforcement learning methods
behind OpenAI o1, our first reasoning model.

 – OpenAI Deep Research Blog, 2025

https://tongyx361.github.io/blogs/posts/verl-intro/
https://tongyx361.github.io/blogs/posts/verl-intro/

Why is Large-Scale RL
System Challenging?

Diverse RL algorithms as Complex Dataflows

Reinforcement learning can be modelled as complex dataflow graph with:
● multiple models:

○ Policy model (actor): the LLM to train

○ Reward model: provides immediate rewards

○ Reference model: makes sure the updated policy model not to deviate too far with KL

○ Value model (critic): predicts the long term value of the state

● multiple workloads: generation, inference, training, weight sync

(Schaarschmidt et al. 2019; Liang et al. 2021; Sheng et al. 2025

 https://fireworks.ai/blog/reinforcement-learning-with-verifiable-reward

http://localhost:4153/posts/verl-intro/index.html?quartoPreviewReqId=1748597939088&quartoPreviewThemeCategory=dark
http://localhost:4153/posts/verl-intro/index.html?quartoPreviewReqId=1748597939088&quartoPreviewThemeCategory=dark
http://localhost:4153/posts/verl-intro/index.html?quartoPreviewReqId=1748597939088&quartoPreviewThemeCategory=dark

RL with LLMs is Large-Scale Distributed Dataflow
each operator in the RL dataflow = a large-scale distributed computing workload

HybridFlow, Sheng et al., 2024

Why verl for RL with LLMs?

Flexible and Efficient!

Background: Single-Controller vs. Multi-Controller

Single-Controller (MPMD, flexible):
A centralized controller manages all the
workers, running different programs

Pathways, Barham et al., 2022

Multi-Controller (SPMD, efficient):
Each worker has its own controller, running
the same program with different data

I.e., Tensorflow 1, Rllib, … I.e., PyTorch, JAX, …

New Paradigm: Hybrid-Controller!

● Hybrid-Controller = Single-Controller + N x Multi-Controller
● In the hybrid-controller, a single-controller manages multiple multi-controllers to

process the dataflow

a central process to control
core algorithm logic

multiple processes for
efficient nD parallel

training/serving execution

Flexibility in Programming: “Single-Controller”

● Programming interface based on the “single-controller” paradigm
● RL algorithm core logic in a few lines of code!
● Diverse RL algorithms

supported: PPO, GRPO, RLOO, GSPO, PRIME, DAPO, etc.

➡

HybridFlow, Sheng et al., 2024

https://github.com/volcengine/verl/blob/main/examples/ppo_trainer
https://github.com/volcengine/verl/blob/main/examples/grpo_trainer
https://github.com/volcengine/verl/blob/main/examples/rloo_trainer
https://github.com/volcengine/verl/blob/main/examples/remax_trainer
https://github.com/volcengine/verl/blob/main/recipe/prime
https://github.com/volcengine/verl/blob/main/recipe/dapo

Efficiency: “Multi-Controller”

Parallelism Algorithms:
● Data Parallelism
● Tensor Parallelism
● Pipeline Parallelism
● Context / Sequence Parallelism
● Expert Parallelism

Efficient Kernels:
● Flash Attention 2
● Torch Compile
● Liger Kernel
● …

Training Backends:
● FSDP
● FSDP2
● Megatron

Generation Backends:
● vLLM
● SGLang
● …

verl is efficient for intra-operator with the “multi-controller” paradigm and features like:

Open-Source Community: Impactful and Inclusive

So far, verl has gained:

● 13.3k stars
● 2.4k forks
● 1.9k PRs
● 360+ contributors

Waiting for your participation!

Capabilities

• VLM recipe: deep-eye

• LLM recipes: DAPO, retool

• Image/video support

• Large MoE

• Multi-GPU LoRA

• Sandbox/search tools

Recent Updates
& Roadmap

Approaching Agentic RL

ReTool, Feng et al., 2025

Async Multi-Turn Rollout with Tools

• Synchronous Engine: returns all the outputs in the batch at the same time
• Asynchronous Server (rollout.mode=async): returns each output as soon as it is ready 🚀🚀🚀

https://novasky-ai.notion.site/skyrl-v0

Token-in-token-out Agent Loop Interface

Given one prompt, run a user defined loop with multi-turn/tool calling trajectories.
Token ids are used for server generation input / output to avoid ambiguity.

Efficient RL with MoEs like DeepSeek-V3-671B

verl is working on supporting efficient RL training for MoE like DeepSeek-V3-
671B/Qwen3-235b, based on the following features:

● Runnable with 96 H100 GPUs
● Training: MoE models based on Megatron, ~0.12 MFU
● Inference: Multi-node tensor parallel inference
● Verified reward curve on orz57k & proprietary datasets from community
● Planned: fp8 rollout, gpt-oss-120b (sglang PR #9379)

For more details, please check issue tracker #1033.

Credit to NVIDIA, Amazon, RedNote, etc

https://github.com/volcengine/verl/pull/708

Recent Roadmap

● Modular design: composable model engines with better abstraction
○ Algorithm agnostic engine abstraction: FSDP2, Megatron, and more

● Partial rollout & fully-async training pipeline (AReal, Kimi, 2025)
● Rollout performance optimizations (fp8)

● Agentic RL recipes (e.g. SWE-bench)
● Efficient multimodal data transfer via references

Github roadmap issue tracker #2388.

https://github.com/volcengine/verl?tab=readme-ov-file

