Intelligence Beyond Words

NVIDIA Cosmos Physical AI on NeMo

Elliott Ning | NVIDIA Sept 17, 2025

AI Advancements Industry Timeline

2000s

2010s

2022-

Simple ML Models

Linear / Logistic Regression Decision Trees, Random Forests Focus: Structured data predictions

NLP / NLU

Word2Vec, BERT, GPT Machines understand human language Applications: Chatbots, Search, Sentiment

Generative Al

2020-

GPT-3/4, Stable Diffusion, DALL·E Create text, images, music, code Creativity at scale

Multimodal AI

CLIP, Flamingo, GPT-4V Understand across modalities (text, vision, audio) Applications: Image captioning, VQA, Robotics perception

World Models and Building Challenges

Training robots to sense, predict and act with world models

"A neural network that represents real-world, predicting future states and outcomes based on inputs, enabling planning and action for robots."

Petabytes of photoreal visual data- Training needs high-quality petabytes of visual data and millions of hours of video footage.

Data curation and tokenization for model training- While acquiring the data is difficult, it is even harder to filter, curate, and tokenize for training.

Resource intensive training - Training costs multiple millions of dollars in compute time and requires access to a large volume of GPUs.

Cosmos World Foundation Model Development

Data strategy and training resources

20 million hours of videos

9,000 trillion input tokens

2,000+ hours of training

NVIDIA Cosmos

Cosmos World Foundation Models come in three model types which can all be customized in post-training

	<u>Predict</u>	<u>Transfer</u>	Reason
Туре	World Generation	Multi-Controlnet	Reasoning VLM
Function	Predict novel future frames given initial frames	Transfer existing control frames into photoreal frames within a video clip	Reason against frames within a video clip
Use Cases	Data Generation & Policy Evaluation	Data Augmentation	Data Curation
Inputs	Text, Image, Video	Multiple Video Modalities such as RGB, Depth, Segmentation, and more.	Video & Text
Outputs	Video	Video	Text

Cosmos WFMs For Physical AI

Accelerating Synthetic Data Generation And Foundation Model Development

NVIDIA Cosmos

Diffusion Model

Diffusion models are popular for generating images, videos, and audio due to their ability to deconstruct training data and reconstruct it based on user input, producing high-quality, realistic outputs

NVIDIA NeMo Framework is a scalable and cloud-native generative AI framework

Open Source and Enterprise Containers

Open Source on GitHub

https://github.com/NVIDIA-NeMo

Enterprise Container on NGC

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo

Overview of Repos under NeMo Framework

End to End Pipeline for Video Foundation Model Pretraining & Finetuning

Data Processing and Curation Pipeline

Accelerate video processing from years to days

NVIDIA NeMo Framework Training

Training Workflows - Automodel & Megatron

	Megatron-Core Backend	AutoModel Backend
Coverage	Most popular LLMs with recipes tuned by experts	All models supported in Hugging Face Text on Day-0
Training Throughput Performance	Optimal Throughput with Megatron-Core kernels	Good Performance with liger kernels, cut cross entropy and PyTorch JIT
Scalability	Up to 1,000 GPUs with full 4-D parallelism (TP, PP, CP, EP)	Comparable scalability using PyTorch native TP, CP, and FSDP2 at slightly reduced training throughput
Inference Path	Export to TensorRT-LLM, vLLM, or directly to NVIDIA NIM	Export to vLLM

NVIDIA NeMo Automodel

GPU-accelerated PyTorch training for Hugging Face models on Day-0

- HuggingFace Integration
- SFT (Supervised Fine-Tuning), and PEFT (Parameter Efficient Fine-Tuning)
- Native PyTorch support for models up to 70B parameters
- PyTorch native FSDP2, TP, CP, and SP for efficient training
- Sequence packing in both DTensor and MCore for huge training perf gains

```
1. Distributed Training Configuration
 distributed:
   _target_: nemo_automodel.distributed.megatron_fsdp.MegatronFSDPManager
   dp size: 8
   tp size: 1
   cp_size: 1
2. LoRA Configuration
 peft:
   peft_fn: nemo_automodel._peft.lora.apply_lora_to_linear_modules
   match all linear: True
   dim: 8
   alpha: 32
   use triton: True
3. Vision-Language Model Fine-Tuning
 model:
   _target_: nemo_automodel._transformers.NeMoAutoModelForImageTextToText.from_pretrained
   pretrained_model_name_or_path: Qwen/Qwen2.5-VL-3B-Instruct
 processor:
   _target_: transformers.AutoProcessor.from_pretrained
   pretrained model name or path: Owen/Owen2.5-VL-3B-Instruct
   min_pixels: 200704
   max_pixels: 1003520
```


NVIDIA NeMo Megatron

State-of-the-art training throughput for top models

Megatron Bridge

Bidirectional converter for interoperability between Hugging Face and Megatron

- Seamless bidirectional conversion between Hugging Face and Megatron
- Lightweight custom training loop to configure custom logic in data loading, distributed training, checkpointing, evaluation and logging
- SFT & PEFT implementation tailored for Megatronbased models
- · Production-ready recipes for popular models

Megatron Core

Train top generative AI models with unparalleled speed at scale across thousands of GPUs

- · World-leading training speed and scalability
- Advanced model parallelism techniques: tensor (TP), sequence (SP), pipeline (PP), context (CP), and MoE expert (EP) parallelism
- Automatic restart, fault/hang detection, and fast distributed checkpointing
- FP8 mixed precision & memory-saving functionalities

Different Parallelism - An Example

Put it all together

NVIDIA Megatron Core

Train generative AI models from scratch at scale

Aggregate Throughput (Weak Scaling)

With GPT models ranging from 2 billion to 462 billion parameters, Megatron-Core demonstrates superlinear scaling up to 6144 H100 GPUs.

Aggregate Throughput (Strong Scaling)

With a 177 billion parameter GPT-3 model using the same batch size of 1152 sequences throughout, Megatron-Core demonstrates near linear scaling from 96 to 4608 H100 GPUs.

Benchmark - Training Throughput

Small Models (<20B) on 8~16xH100

Medium Models (20B~70B) on 64xH100

Large Models (175B~340B) on 128~512xH100

NVIDIA NeMo RL

A Scalable and Efficient Post-Training Library

Integration & Customization

- Seamless integration with Hugging Face
- o Flexibility with a modular design that allows easy integration and customization

High Performance & Scalability

- High-performance implementation with Megatron Core
- Fast Generation vLLM backend for optimized inference

Advanced Training Techniques

- o Advanced Parallelism and Ray-based infrastructure PyTorch native FSDP2, TP, CP, and SP for efficient training
- Learning Algorithms GRPO (Group Relative Policy Optimization), SFT (Supervised Fine-Tuning), and DPO (Direct Preference Optimization)
- o Multi-Turn RL Multi-turn generation and training for RL with tool use, games, etc
- o Sequence Packing Sequence packing in both DTensor and MCore for huge training perf gains

NVIDIA NeMo RL

Megatron vs PyTorch DTensor Backends

Enterprise-Grade Training Framework

Performance & Scalability

- More than 800 TFLOPs/sec/GPU
- 4D Parallelism
- Trained over 16k+ cluster size
- Supports 1M+ sequence length
- GPU-accelerated data curation
- Fault tolerance integration

Customization & Modularity

- 23 model families Incl LLM, SSMs, MOEs, SD, VLMs, VFMs
- Streamlined pretraining & fine-tuning pipelines
- Python-based configuration
- Modular architecture
- Ready-to-use scripts & models

Enterprise Support & Security Available

- E2E workflow from Data Curation, SFT, PEFT, RL, Eval Export & Deploy
- Backed by NVIDIA Enterprise Support
- Security hardened
- Long term support

Thank you!

Useful Links to Get Started

Cosmos Model Collection on Hugging Face:

https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e 013a0a0d8e6

Cosmos Developer Guide:

https://docs.nvidia.com/cosmos/latest/index.html#

NeMo Open Source on GitHub:

https://github.com/NVIDIA-NeMo

NeMo Enterprise on NGC:

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo

NeMo User Guide:

https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html