
A pragmatic approach to
building generative AI

applications

Agenda

1. About Me

2. Not every problem needs a Gen AI solution

3. Hype- & jargon-free patterns for building AI applications

4. The Last Mile problem of Evaluation

5. Customary plug of LastMile AI

6. Q&A

About Me
What we do at LastMile AI

Enable software engineers, not just ML research scientists, to ship generative AI applications
with confidence in production

About the speaker:

● CEO of LastMile AI

● Building developer tools my entire career – VS Code and build

systems at Microsoft, Jupyter notebook platform at Meta

● Helped build AI infra for Metaʼs ML engineers and data scientists.

Team mission:

Sarmad Qadri

AI innovation is accelerating:
● Models keep getting better and smaller
● Cost/token down 10x-100x

But we are at the risk of seeing every problem through the lens of
Gen AI, whether it deserves to or not.

● Not every problem is an AI problem
○ Example: Chat interfaces everywhere

● Not every AI problem is a Gen AI problem
○ Example: RAG vs. IR or RecSys

There is a lot of hype around generative AI
…but not every problem needs a Gen AI solution

Iterate

Test

Bu
ild

Step-by-step guide to building AI applications That WorkTM

Hype- & jargon-free patterns that can help you scale

Iterate

Test

Bu
ild

Gen AI Prototype

Production Ready Gen AI App

User Interface

Prompts

Hosted LLM

It takes days to build
a prototype

But it takes months to make
the prototype production
ready

User Interface

Prompts

Hosted LLM

Prompt
Composition

Logic

Local LLM

Data Indexing Data Chunking

Encoding Context Retrieval

Routing

Evaluation/Testing Suite
Messy development loop

A. Clearly define the business problem you are trying to solve.

B. Identify the best implementation for your problem
○ Example: For math, use a calculator. For fixed patterns,

a regexp will do.

C. If the simplest approach still requires a generative model, then
proceed to Step 2.

○ Example: Intent recognition, natural language
processing, information synthesis

Step 1: Is this a hammer looking for a nail?
Will your problem benefit from an AI solution?

Iterate

Test

Bu
ild

Last year everyone was talking about vector databases, then RAG,
then prompt optimization frameworks, and now weʼre talking about
agentic workflows.

We donʼt need to reinvent everything:
● “LLM Observability” is just… observability.
● “Multi-agent workflows with memory” ~= Workflow

orchestration with persistent state
● “Agent” ~= LLM with tool use (in vast majority of cases)
● “Prompt management” ~= just use source control

Step 2: Cut through the hype and jargon
There are a lot of distractions with the Shiny New Thing

Iterate

Test

Bu
ild

Step 3: Understand the limits of the current SOTA
Stay within the limits to ensure a robust application experience

tl;dr:
● Really good for enhancing retrieval applications
● Not yet great for unconstrained agentic workflows

Tips:
A. Almost every use case in enterprise boils down to

information retrieval, extraction, synthesis.

B. For agentic workflows, make it more deterministic
by defining a state machine of interactions

○ Example: a codemod agent workflow can use
its domain knowledge to define a state
machine DFA

Step 4: Build the system!
Donʼt forget about machine learning pre-ChatGPT

● Avoid unnecessary frameworks, except to
prototype quickly.

○ As you iterate on the system, the
abstractions often get in the way.

● For retrieval systems, donʼt forget about IR
research from pre-LLM days:

○ BERTopic for topic extraction
○ RBAC and data refresh/indexing

● Enhance experience with fine-tuned LLMʼs
and rerankers

○ Example: Incident response (Meta): 42%
accuracy in incident RCA (root-cause analysis)

https://maartengr.github.io/BERTopic/index.html
https://engineering.fb.com/2024/06/24/data-infrastructure/leveraging-ai-for-efficient-incident-response/

Step 5: Set up the harness around your application
Guardrails, monitoring & observability, etc.

Embrace the complexity, without
overcomplicating things.

AI systems are distributed systems,
and require a lot of the same
primitives:

● Guardrails to constrain behavior
(more on this later)

● Observability
● Feedback loop to improve the

system (including data for
fine-tuning)

Source: Building a generative AI platform (Chip Huyen)

https://huyenchip.com/2024/07/25/genai-platform.html

Evaluation: how do I know my application is performing well?

AI evaluation breaks the traditional SDLC:
● AI applications introduce non-determinism, which is

different from standard integration tests/unit tests.

Current state-of-the-art for evaluating AI systems is
LLM-as-a-judge. This approach is:

● Expensive
● Unreliable (LLMs werenʼt designed to be evaluators)
● Hard to customize for your specific application

Step 0: The Last Mile problem of Evaluation
Define how you are going to evaluate/measure performance

Iterate

Test

Bu
ild

LastMile SDLC – AutoEval
Custom evaluator models for evaluation, testing and guardrails of AI applications

AutoEval

State-of-the-art evaluator models for evaluating
and testing LLM & RAG applications. More
performant and efficient than LLM-as-a-judge
techniques.

HaluEval WikiEval

SotA Baseline 85% 85%

LM P(Faithful) 86% 98%

Supported Evaluators: Faithfulness, Correctness, Toxicity, and
Relevancy

Fine-Tuning Evaluators: Cost-efficient enough to be fine-tuned
to your business use case.

Guardrails: 100x faster than LLM-as-a-judge allows it to be used
during online inference.

Each model can be fine-tuned for your
application, to get customized metrics and
measure performance in the context of your
task.

● Fine-tune with an API
● Manage your custom evaluators
● Customize metrics specific to your

application.

Fine-tuned to your application
AutoEval works well zero-shot, and can also be fine-tuned per application

Guardrails are just evaluators that run online
Evaluation and guardrails are 2 sides of the same coin

AutoEval models are fast (< 300ms on CPU, and cheap to operate 1/1000th the cost of
GPT4 → you can run them on every response as a guardrail.

● Example: use AutoEval to measure faithfulness, and if a response is deemed to have
hallucinated, route to a backup response instead.

● You can also train custom guardrail models for specific safeguard policies using the
same base model

LastMile AutoEval
Application performance dashboard

Thank you!
Get in touch with me about LastMile AutoEval

AutoEval Signup
email: sarmad@lastmileai.dev

any
questions?

