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Help everyone build and serve custom AI models…

…using their own unique data…

…to achieve the highest quality on their domain…

…as efficiently and cost-effectively as possible.

Our Mission
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LLM Training

Train from 
scratch, pick a 

model 
architecture

Pre-training

Fine-tuning RLHF

Use a pre-trained 
foundation model

Deploy 
Application

Continued 
Pre-training

Choose your adventure



©2024 Databricks Inc. — All rights reserved

Why build your own generative AI models? 
Because organizations value privacy, quality, low cost and low latency

LatencyCostQualityPrivacy
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DBRX
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● An open LLM built entirely at Databricks.
● Data Size: 12T Tokens
● Model Size: 132B params, 36B active params 
● Infra/Cluster Size: 3072 H100 GPU (384 nodes)

What is DBRX & DBRX Training Scale
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Commercially viable OSS top model.

Help Enterprises with our learnings.

We upgraded our LLM training stack.

Stress testing and improving Databricks for GenAI.

This talk: Our Experience, Learnings, Gotchas and 
how to build custom DBRX-class models.

Why did we build DBRX?
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Lessons & Gotchas

8
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Start small and work your way up.

Don’t trust what you read in the literature.
Test everything for yourself.

Don’t trust intuition, received wisdom, or a rumor. 
Test everything for yourself.

Do the math.

Learnings in a nutshell…
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Define success (evaluation)

Understand your budget (model and data size)

Fill in the details (which model and data)

And then you train… (scaling and infrastructure)

Roadmap
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Evaluation

You can’t make progress until 
you know what success looks 
like.
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Something cheap and automatic.

Something somewhat involved and more realistic.

Something close to the real world.
(Can be slow and expensive.)

Evaluation: what you need
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Something cheap and automatic.

● Your inner development loop.

● Has right and wrong answers.

● For DBRX: the Mosaic Gauntlet

Evaluation: what you need
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Evaluation: what you need
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Something somewhat involved and more realistic.

● Evaluates the generative behavior of the model.

● Likely uses LLM-as-a-judge.

● For DBRX: MTBench, IFEval, Arena Hard.

Evaluation: what you need
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Something close to the real world.

● Real human evaluation.

● Slots into an existing workflow for A/B testing.

● For DBRX: Human annotation, customer 

feedback.

● For image models: Human preferences in 

Evaluation: what you need
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Read your evaluation sets and 
results
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Read your evaluation sets and 
results

We estimate that somewhere around 70% of GPT-4’s “mistakes” 
on BIRD Bench should be marked as correct.

Internal Slack
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Model and Data Size

Understand your budget and 
constraints. Plan accordingly.
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Attempt 1: Training Compute 
Cost

You have a budget of $. Train the best model.

The cost of training ≈ model size x data size.

Extreme 1: Train a giant model on very little data.

Extreme 2: Train a tiny model on tons of data.

The answer is somewhere in between. But where?
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Attempt 1: Training Compute 
Cost

The Chinchilla paper. Tokens = 20 x Parameters.
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Attempt 2: Lifecycle Compute 
Cost

Train the best model and perform inference.

Worth training a smaller-than-optimal model to 
reduce inference cost.

Also has the benefit of simplifying training.
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Attempt 2: Lifecycle Compute 
Cost

Train the best model and perform inference.

Model Chinchilla Llama2-7B Llama2-70B Llama3-8B Llama3-70B

TPR Ratio 20 285 28.5 1875 214.2
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Attempt 3: Compute + Data 
Cost

1 2 3 4

1.  Pretraining

2. Curriculum Learning

3. Fine-Tuning

4. RLHF

~10T tokens, general data

~1T tokens, higher quality
~10K-100K instructions

~10K-100K preferences
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Attempt 3: Compute + Data 
Cost

1 2 3 4

1.  Pretraining ~10T tokens, general data

Your
Data
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Attempt 3: Compute + Data 
Cost

1 2 3 4

Your
Data

2. Curriculum Learning ~1T tokens, higher quality
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Attempt 3: Compute + Data 
Cost

1 2 3 4

3. Fine-Tuning ~10K-100K instructions

Your Data
Human 

Annotation
O($10-100)
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3. Fine-Tuning ~10K-100K instructions

Llama2 Paper
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Attempt 3: Compute + Data 
Cost

1 2 3 4

3. Fine-Tuning ~10K-100K instructions

Your Data
Human 

Annotation
O($10-100)

Synthetic 
Data
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Attempt 3: Compute + Data 
Cost

1 2

4. RLHF ~10K-100K preferences

Your Data
Human 

Annotation
O($5-20)

3 4
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Attempt 3: Compute + Data 
Cost

1 2 3

4. RLHF ~10K-100K preferences

4

Llama2 Paper
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Which Data?

You are what you train on.
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Exercise: Build a 1T Token 
Pretraining Set

Dataset Size

Web data 2.4T tokens

Code data 400B tokens

Wikipedia English 7B Tokens

Wikipedia Other 47B Tokens

Science papers 60B Tokens

Literature 5B Tokens

Distribute evenly? Upsample certain datasets?
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The Original Llama Dataset
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The Value of Better Data

Arch. Tokens Dataset Gauntlet Score

MPT-7B 1000B MPT (Apr 2023) 30.9%
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The Value of Better Data

Arch. Tokens Dataset Gauntlet Score

MPT-7B 1000B MPT (Apr 2023) 30.9%

MPT-7B 1000B DBRX (Jan 2024) 39.0%

Updated dataset leads to 8.1pp improvement.
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The Value of Better Data

Arch. Tokens Dataset Gauntlet Score

MPT-7B 1000B MPT (Apr 2023) 30.9%

MPT-7B 500B DBRX (Jan 2024) 32.1%

With a better dataset, we get a
better model with half as much data.



©2024 Databricks Inc. — All rights reserved

Key Questions About Data

How should you mix data? Freshness vs. repetition.

Quality vs. Quantity

Should you deduplicate your data?

Run experiments. Let science be your guide.
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How to run experiments

Start small and work your way up. 
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How to run experiments

Start with small models and see how your metrics 
improve as you scale.

Risk: Your metrics may not have
signal until a certain scale.

Must train a 7B model on 2T tokens to get signal 
on a popular coding benchmark (HumanEval).  
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Which Model?

Spoiler: It’s going to be a transformer.
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Our Advice: Follow the Beaten Path

Train a transformer.

Perform next-token prediction.

Use quadratic attention.

Follow the Llama scaling rules.

For advanced users: Use RoPE and Adam
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Our Stack

FP8 and Mixture-of-Experts (MoE)

● FP8 = precision we use for matrix multiplication
● MoE = model architecture
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Training in FP8

FP8 training on H100 is 1.5x faster
than BF16 in practice.  
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Mixture-of-Experts: TLDR

Bigger models are better than smaller ones.

Bigger models are slower than smaller ones.

Insight: Use a big model, but only activate a small 
part of it for any input.

Quality of a bigger model, speed of a smaller one.
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The Value of Mixture-of-Experts

Arch. Active Params Relative FLOPs Gauntlet Score

Llama2-
13B

13B 1.7x 43.8%
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The Value of Mixture-of-Experts

Arch. Active Params Relative FLOPs Gauntlet Score

Llama2-
13B

13B 1.7x 43.8%

DBRX Small 6.6B 1x 45.5%
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The Value of Mixture-of-Experts

Arch. Active Params Relative FLOPs Gauntlet Score

Llama2-
13B

13B 1.7x 43.8%

DBRX Small 6.6B 1x 45.5%

Our mixture-of-experts training recipe
scored higher, used 1.7x less training compute, 
and behaves like a model 2x smaller at inference 
time.
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Do the math

How long will it take to train?
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How long will it take to train my model?

How Long to Train
7B Param Model
Chinchilla Tokens
64 A100s

Data = 20 x 7e9 = 1.8e11
FLOPs = 6 x 7e9 x 1.8e11 = 5.88e21
Cluster FLOP/sec = 3.12e14 x 64 = 2e16
Time = FLOPs / Cluster FLOP/sec = 5.88e21 / 2e16 = 3.4 days

Cheatsheet
FLOPs = 6 x Parameters x Tokens
Tokens = 20 x Parameters (Chinchilla)
A100 = 312 TFLOP/sec = 3.12e14 FLOP/sec
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How long will it take to train my model?

How Long to Train
7B Param Model
Chinchilla Tokens
64 A100s

There’s something missing here!

Cheatsheet
FLOPs = 6 x Parameters x Tokens
Tokens = 20 x Parameters (Chinchilla)
A100 = 312 TFLOP/sec = 3.12e14 

FLOP/sec
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How long will it take to train my model?

How Long to Train
7B Param Model
Chinchilla Tokens
64 A100s

There’s something missing here!

Cheatsheet
FLOPs = 6 x Parameters x Tokens
Tokens = 20 x Parameters (Chinchilla)
A100 = 312 TFLOP/sec = 3.12e14 

FLOP/sec
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How long will it take to train my model?

How Long to Train
7B Param Model
Chinchilla Tokens
64 A100s

You won’t fully utilize your GPU.
There are other bottlenecks in the system.

This is the theoretical peak. You will get power limited.

Cheatsheet
FLOPs = 6 x Parameters x Tokens
Tokens = 20 x Parameters (Chinchilla)
A100 = 312 TFLOP/sec = 3.12e14 

FLOP/sec
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How long will it take to train my model?

How Long to Train
7B Param Model
Chinchilla Tokens
64 A100s

MFU = Model Flop Utilization
What fraction of the peak GPU FLOP/sec is your model getting?

Only counts 6 x Parameters x Tokens, not recomputation.
For this configuration, 50.7% MFU.

Cheatsheet
FLOPs = 6 x Parameters x Tokens
Tokens = 20 x Parameters (Chinchilla)
A100 = 312 TFLOP/sec = 3.12e14 

FLOP/sec
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How long will it take to train my model?

How Long to Train
7B Param Model
Chinchilla Tokens
64 A100s
Data = 20 x 7e9 = 1.8e11
FLOPs = 6 x 7e9 x 1.8e11 = 5.88e21
Cluster FLOP/sec = 3.12e14 x 64 x 50.7% = 1.01e16
Time = FLOPs / Cluster FLOP/sec = 5.88e21 / 1.01e16 = 6.7 
days

Cheatsheet
FLOPs = 6 x Parameters x Tokens
Tokens = 20 x Parameters (Chinchilla)
A100 = 312 TFLOP/sec = 3.12e14 FLOP/sec
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Nuts and Bolts / 
Infrastructure

The technologies we built on.
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Tool Stack
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MosaicAI Model Training Engines

Composer. Training library built for scalability.

Streaming. Stream efficiently from object stores.

LLM Foundry. Highly efficient and scalable training and fine-tuning code for 
popular LLMs.

MegaBlocks. Mixture-of-Experts implementation.
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MosaicAI Model Training Engines - OSS

Composer. github.com/mosaicml/composer

Streaming. github.com/mosaicml/streaming

LLM Foundry. github.com/mosaicml/llm-foundry

MegaBlocks. github.com/databricks/megablocks
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Problem: Hardware Failures

Normally: O(N) things can go wrong Training : O(N^2) things can go wrong

● Hardware/Software or both. Something Fails. Roughly once every 1000 
H100-days (~3 failure / day / 3072 GPU cluster)

● GPUs, Switches, Communication Libraries (NCCL)
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Our solution: Automatic failure detection and 
blazingly fast job restart times.

Problem: Hardware Failures
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● Pick a platform that handles the “undifferentiated stuff”
○ Software packages and dependencies
○ Scheduling and orchestration
○ Model checkpointing
○ Fault tolerance, detection 

and monitoring
○ Automatic fault recovery

Platform is key for speed of development
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● No Long Lived Clusters 
means:
○ Streaming data from 

blob storage
○ Ephemeral storage 

only - no persistent 
volumes!

○ Async checkpoint 
upload to blob 
storage 

Reliable Infrastructure => No long lived 
clusters!
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Recap
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Training Large Language Models is:

Evaluation Strategy
+

Data Strategy 
+

Science (Model) 
+ 

Systems and Reliable Infrastructure 
+ 

Process and Discipline
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Appendix / Additional References
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MosaicML Foundation Series
Busting Cost Myths

6

8
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MosaicML Foundation Series
Busting Cost Myths

6

9

Pre-training

Fine-tuning
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