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Overview A7

e Graph RAG has become an incredible buzz term in recent times
e Whatis Graph RAG, and what are its components?
e Do graphs measurably improve RAG, in practice?

e Can we devise a framework to better understand Graph RAG?

o Whatis the “graph” in Graph RAG? What do the nodes and edges represent?

o How is the retrieval process different from traditional (vector-only) RAG?

e \What role do databases play in the pipeline?



Retrieval in the age of LLMs AN Z 1

Query

Response
(natural language)

(natural language)
“Chat with an LLM”

Query l T

Response
(natural language)

(natural language)

)
l T i

Unstructured data Structured data
o (2
— -
Cannot easily retrieve from )
' nterprise data — o~ ’
private enterp E D
‘
\_ /L J

Private enterprise data



A deeper look at traditional RAG
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What is Graph RAG?
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Extends traditional RAG by incorporating a graph
as part of the retrieval step
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Question 1: What is the graph? l.e., what are its nodes and edges?
Question 2: How is the retrieval process different from traditional RAG?



Why enhance unstructured data with a graph? A1 /1|

e Graphs are object-oriented in nature — they represent entities or objects in the real world via
nodes, and how they are connected via edges

e Graphs capture relationships between entities explicitly

o Traversing the vicinity of an entity to get added context is natural and easy

e Agraph data model is a good fit to add structure to related entities extracted from
unstructured data

e Importantly, graph triples/edges <subject, predicate, object>, can be represented as
simple sentences (useful to generate context)



Some history...
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Early primary sources for “RAG”
Feb 2020 [Google]

REALM: Retrieval-Augmented Language Model Pre-Training

Apr 2021 [Facebook Al Research]

Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks

Early primary source for “Graph RAG”
Sep 2023 [NebulaGraph]

NebulaGraph Launches Industry-First Graph RAG: Retrieval-Augmented

Generation with LLM Based on Knowledge Graphs

Ongoing mindshare: Microsoft’s “Graph RAG”

Apr 2024 [Microsoft Research]
From Local to Global: A Graph RAG Approach to
Query-Focused Summarization

Computer Science > Computation and L

[Submitted on 24 Apr 2024]

ar (iv > cs > arXivi2002.08909

Comp Science > C ion and L

[Submitted on 10 Feb 2020]
REALM: Retrieval-Augmented Language Model Pre-Training

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, Ming-Wei Chang

=] I‘ <1V > cs > arXiv:2005.11401

C Science > C ion and L

[Submitted on 22 May 2020 (v1), last revised 12 Apr 2021 (this version, v4)]
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Kiittler,
Mike Lewis, Wen-tau Yih, Tim Rocktdschel, Sebastian Riedel, Douwe Kiela

(@) NebulaGraph  producs +  Enorprse Comer = DoveloperCanter + Loam =

NebulaGraph Launches Industry-First
Graph RAG: Retrieval-Augmented
Generation with LLM Based on
Knowledge Graphs

uuuuuuuuuuu

a I‘(lV > cs > arXiv:2404.16130

From Local to Global: A Graph RAG Approach to Query-Focused Summarization

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, Jonathan Larson




The emergence of "Hybrid RAG”
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Not to be confused with “hybrid search”, Hybrid RAG is what you call RAG when
you combine multiple retrieval methods

Jan 2024 [WhyHow.ai]

“Injecting Knowledge Graphs in different RAG stages”

Chia Jeng Yang

Feb 2024 [guitton.co]
“Graphs and Language”
Louis Guitton
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Do graphs measurably improve RAG in practice? |4l /|

HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation

for Efficient Information Extraction (BlackRock & Nvidia), Aug 2024

Source: https://arxiv.org/pdf/2408.04948v1

Evaluation: Hybrid RAG system
does better overall than systems
that were based on vector
retrievals or graph retrievals alone


https://arxiv.org/pdf/2408.04948v1

Unpacking BlackRock’s Hybrid RAG (1)

rivan

Question 1: What is the graph? What do its nodes and edges represent?

Step 1: Text cleaning

) ) j
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Step 2: Triple extraction

(e

Prompt for knowledge extraction
in the form of triples



Unpacking BlackRock’s Hybrid RAG (2)

Example of summarization and triple extraction

Chunk 1

Larry Fink is the CEO and co-founder of
BlackRock, the world's largest asset
management firm, established in 1988 ...

Step 1:

Chunk 2 .
Text processing

Born in Los Angeles, California, in
1952, Fink grew up in Van Nuys and

later earned his MBA from UCLA's
Anderson School of Management ...

—_—

Chunk n

10.0 trillions of dollars in asset management ...

Processed chunk 1

<Larry Fink, is_ceo_of, BlackRock >
<Larry Fink, founded, BlackRock >
<BlackRock, founded _in, 1988 >

Larry Fink is the CEO and co-founder of
BlackRock.
BlackRock was established in 1988.

Step 2:

Processed chunk 2 . .
Triple extraction

<Larry Fink, born_in, Los Angeles >
—» <Los Angeles, is_city_in, California >
<Larry Fink, graduated_from, UCLA >

Larry Fink was born in Los
Angeles, California.

Larry Fink earned his MBA from
UCLA

Processed chunk n

<BlackRock, asset value, 10.5 trillion >
BlackRock manages 10.5 trillion

dollars in assets.



Unpacking BlackRock’s Hybrid RAG (3) AN Z 1

Recall: Graphs can model simple sentences
Chunk 1

is_ceo of
BIackRock <Larry Fink, is_ceo_of, BlackRock >
/ <Larry Fink, founded, BlackRock >

founded

graduated_from —p @ Chunk 2
<Larry Fink, born_in, Los Angeles >
born in <Los Angeles, is_city_in, California >
E P4 <Larry Fink, graduated_from, UCLA >
is_city_in
Los
Angeles

e Benefit 1: Information in disparate chunks are now directly connected

e Benefit 2: Triples are a form of capturing the essence of text chunks in very simple sentences

e Benefit 3: Can now put the triples into a graph DB where you can query it using a query language



Unpacking BlackRock’s Hybrid RAG (4)

Question 2: How is retrieval different from traditional RAG?
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MATCH (p:Person)-[el:is_ceo_of]— (c:Company)
WHERE c.name = "BlackRock"
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Retrieval strategies in Graph RAG
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Concatenate context from a vector retrieval + graph

retrieval (Hybrid RAG)
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https://gradientflow.substack.com/p/graphrag-design-patterns-challenges

The role of databases A1 71

e In practice, graph construction is an iterative process — a graph is rarely “complete”,
and needs to be built upon over time, as more data arrives

e Data preprocessing and exploration are key in early stages, and many graph
databases offer visual tools to aid in this process

e Strong persistence guarantees within a database can help with reproducibility and
sharing data across the organization

e Scalability is baked into a database’s design, enabling developers to more easily
move from a PoC to a production-ready scenario



Databases are evolving alongside RAG AN Z 1

e Embeddability + ease of setup + interoperability + permissive licensing

e These characteristics do not preclude scalability or performance
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Usability features of Kuzu A7 1

Property graph data model & RDF wrapper

ACID transactions
(a)-[:1->(b) import kuzu

ame: Alice
age: 25
a.age > 25 : :

[amount: 700] [amount: 500] b.name db = kuzu.Database("db")

conn = kuzu.Connection(db) .
res = conn.execute("MATCH (a)-[:]1->(b)")
print(res.get_as_df()) : l
’ I CONSISTENCY ISOLATION DURABILITY
name: Carol
age: 21

e

Embedded
(similar philosophy to DuckDB, LanceDB)

Cypher huery language

amount: 200

: / CSV
. Parquet =
: PostgreSQL

& PyTorch

Permissively licensed
NetworkX geometnc

-l I I. I .l
| Llamalndex Lang(fhain

: : : f“ License
TS U USSR PP : . DuckDB TurTLe BB :

Learn more at htips://kuzudb.com Interoperable with many formats



https://kuzudb.com

Why use Kuzu as part of a Graph RAG system? A1 /1|

e Interoperability & scalability: Graphs are typically constructed from a variety of
structured & unstructured sources

e Model data as property graphs, with the imposition of structure (strict schema)

e Combine your existing property graphs with domain-specific RDF graphs while still
querying them in Cypher

e Add a persistent graph layer to advanced Graph RAG methods that utilize GNNs,
node embeddings and/or graph algorithms (e.g., clustering)

o Seamless interoperability with NetworkX (+ native graph algorithm support coming soon)
o Serves as a PyTorch Geometric backend



Note on graph construction: Quality is paramount /4!

e Asignificant bottleneck in implementing Graph RAG
remains constructing high quality graphs

e Retrieval performance, which can disproportionately
affect the generation outcome

e Entity resolution is a key (and often necessary) step when
combining data from structured and unstructured sources

o Senzing API, SDK and Desktop tools
o  WhyHow.ai Knowledge Graph Studio Platform

Bob W Smith
442 Mt Pleasant Rd
437-635-5623

o[ o

Bob Randall Smith
314 E Hastings St
604-355-3533

Bob A Smith
356 Main St
356-235-7284

Robert Randall Smith
314 East Hastings St
<4——| 604.355.3533

Bob R Smith
314 East Hastings St.
(604) 355-3533




Takeaways A7

e Graph RAG is not a monolith — graphs and vector search can be combined in
various ways, using many different components in the indexing/serving stages

e Each stage can be built and tuned independently, so it's important to design
concrete evaluation strategies (which are also continually evolving)

e Qualify how and where the graph is being used, and whether or not there exists a
persistent graph storage layer

o Whatis the “graph” in Graph RAG? What do the nodes and edges represent?

o How is the retrieval process different from traditional RAG?

e As the tooling improves, it’s likely that graphs will become core components of
many information retrieval systems



Contribution ideas: Let’s get building! AN Z 1

The best way to learn how to use Graph RAG is by building and evaluating

AdalFlow https://qithub.com/SylphAl-Inc/AdalFlow (Issue #122)
Cognee https://github.com/topoteretes/cognee (Issue #54)
Kotaemon https://github.com/Cinnamon/kotaemon (Issue #134)
Strwythura https://github.com/DerwenAl/strwythura (Issue #3)
nano-graphrag | hitps://github.com/qusye1234/nano-graphrag | (Issue #2)

These, and many other such interesting open source projects are ongoing!


https://github.com/SylphAI-Inc/AdalFlow
https://github.com/SylphAI-Inc/AdalFlow/issues/122
https://github.com/topoteretes/cognee
https://github.com/topoteretes/cognee/issues/54
https://github.com/Cinnamon/kotaemon
https://github.com/Cinnamon/kotaemon/issues/134
https://github.com/DerwenAI/strwythura
https://github.com/DerwenAI/strwythura/issues/3
https://github.com/gusye1234/nano-graphrag
https://github.com/gusye1234/nano-graphrag/issues/2

Thank you!

A Z 1

Kuzu is an open source graph database (MIT license)
Check us out on GitHub and give us a

g qithub.com/kuzudb/kuzu

X @

@kuzudb We're Kuzu Inc.
on LinkedIn!

Join our Discord to discuss more with the
community about your graph use case


https://github.com/kuzudb/kuzu
https://twitter.com/kuzudb
https://www.linkedin.com/company/101059770

rivan

Additional slides



Stages of Graph RAG (1): Indexing AL
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Stages of Graph RAG (2): Serving
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Graph construction: Methods AT 71

e NER: Named entity recognition
o Provide labels for token spans, parsed from unstructured data
e RE: Relationship extraction
o Infer semantic relationships (labelled edges) between co-occurring entities
e Entity resolution
o Disambiguate consistent entities across datasets from structured data
e Entity linking
o Bridge structured/ER and unstructured/NER data together in a graph
e Chunk linking

o Create explicit links between chunks via hierarchical structures



