
Large-Scale Vector
Search in E-Commerce
and Email RAG

A Story of Two Extremes:

Etienne Dilocker
Co-Founder & CTO

 generated with DALLE 3

How can we serve two very different
billion-scale use cases with the same vector

db?

e-commerce ⇔ email RAG

single-tenant ⇔ multi-tenant

billions of vectors per dataset ⇔ millions of datasets

in-memory indexes ⇔ disk indexes

query latency ⇔ cost per tenant

high-frequency updates ⇔ writes across tenants

E-commerce Search

How does the user
interact with the app?

A prominently placed
search bar starts the
user journey.

A search can be pure
text or faceted (e.g.
within price ranges,
specific attributes, etc.)

The user finds the most
relevant products for
their (semantic) query.

 generated with DALLE 3

What does the overall
dataset look like?

There are no or few
natural partitions in the
dataset.

An incoming query is
likely to hit an
unpredictable
subsection of the data.

Examples:

● “colorful summer
dressˮ

● “professional video
cameraˮ

 generated with DALLE 3

How does data flow?

Product changes are
streamed in real-time
from various external
sources producing
millions of updates
every day.

Users query a single,
unified dataset agnostic
of where the data
originally came from.

High amount of
concurrent imports and
queries – on a single
dataset.

What is the scale? What
are our targets?

Number of Objects/Vectors

110 billion
Desired query latency

p50200ms
p99500ms

Updates per day

10s of
millions

Tenants / dataset partitions

1 or few

How do we fit the right tech?

HNSW is a graph-based
approximate nearest
neighbor ANN) vector
index.

It is optimized for very
low latency and high
throughput.

It is somewhat costly to
build and requires all
vectors in memory to
serve queries.

What does it mean to hold 10B
vectors in memory?

Example: text-embedding-3−small with 1536d

1e10 * 1536 * 4Byte = 55TiB

Product Quantization is
a compression technique
that can reduce the
memory footprint of
common vector
embeddings 8-fold.

While using lossful
compression, accuracy
can be restored through
disk-based rescoring of
candidate vectors.

Can HNSW handle so many
updates and deletes?

Will it stay “fresh”?

Weaviateʼs HNSW
implementation makes
use of an in-place batch
repair job.

As a result, it can tackle
millions of updates and
deletes per hour without
sacrificing result quality.

Tech Summary

vCPUs
Constant updates / Freshness

High concurrent query throughput

Low-latency billion-scale search

In-memory vector index HNSW

Memory footprint reduced by
compression PQ

Store and serve billions of objects

Auxiliary disk-based indexes
(filtering, ranges, fuzzy matching)

All caches always “hot ,ˮ no need
to offload to cloud storage.

Hot

Memory

Warm
SSD
Drives

Cold
Cloud
Storage

Email RAG

How does the user
interact with the app?

Email RAG is a classical
AI-assistant or “Ask AIˮ
style of feature.

The user pulls up the AI
assistant on demand to
gain insights into a
personal dataset (in this
case their email mailbox).

 generated with DALLE 3

What does the overall
dataset look like?

The dataset has many
natural partitions. A
typical query can be
narrowed down to
exactly one such
partition.

Example:

Jane searches through
her emails with “when
does my flight leave from
SFO?ˮ

 generated with DALLE 3

How does data flow?

Nearly every mailbox
receives at least one
email per day.

The total number of
emails per mailbox is
low, but the overall
volume is massive.

User behavior is
sporadic. Follows
business hours, many
users have days where
they donʼt query at all.

What is the scale?
What are our targets?

Number of Objects/Vectors

110 billion
Desired query latency

p50200ms
p991000ms

Inserts per day

low millions Tenants / dataset partitions

100s of
thousands

Tenant Size Distribution

number
of
tenants

vectors per
tenant

100 1k 10k 100k 1M 1M

p50 = 50k
p90 = 100k
p95 = 300k
p99 = 1M
max = 3M

The flat index is a
disk-based kNN index
that can be combined
with compression
techniques such as
Binary Quantization to
turn it into an aNN index.

It excels with relatively
small datasets, such as
15M objects.

Tenant (mailbox) activity over 48h

Storage Tiers and their cost

$$$ Memory (HOT)
very fast, but very expensive

Cloud Storage (COLD)
cheap, but slow

SSD Drives (WARM)
medium speed, medium cost

$ slow

fast

Tech Summary

vCPUs

Hot

Memory

Warm
SSD
Drives

Cold
Cloud
Storage

Individual indexes are small 1M
per tenant)

Importing/update is cheap (no
graph updates required)

Memory primarily acts as a cache to
improve latency.

Sweet spot at fairly low numbers.

SSDs are the main workhorses
here.

Best balance between import and
query load.

Inactive or infrequently queried
tenants reside in cold (cloud)
storage.

Where do the cases overlap?

The overall amount of
objects and vectors in
both cases is somewhat
similar (110bn range),
yet the composition is
very different.

Both cases require
sub-second real-time
latency to serve millions
of users.

Weaviate makes it very
easy to integrate with
other vendors in the
embedding ecosystem.

For example, turning text
to vectors using
3rd-party vectorizers like
OpenAI, Cohere, Ollama,
etc works out of the box
– optimized to max out
your specific rate limit
and provide great
observability.

What’s next?

Full separation of storage and compute

Reverse GRPC Proxy

Cloud Storage as Shared Integration point
S3, GCS, etc)

Ingest Query

Ingest Documents Queries

Importer
Validation,

Auto-Schema

stores raw batch
onto queue, no

processing

ST
AT

EL
ES

S

Indexer
applies changes to
shard, increases

shard version

take item from
queue

store final shard in
shard bucket

Serving Nodes
Read-only Weaviate Nodes)

uses (local) SSDs as cache
serve all read queries
poll Cloud Storage for

version updates

ST
AT

EL
ES

S
RE

A
D

O
N

LY

CA
C

H
E

TEMPORARILY
STATEFUL

read shard as
needed

poll cloud storage
for version updates of
cached shards

evict unused shard
to free up caches

Metadata Server
RAFT-based, schema +
cluster metadata only

EBS

NVMe

Queries

redirect to correct nodevalidate, auto-schema,
implicit tenant-creation

Recap

Weʼve looked at two billion-scale use cases that
both require real-time latencies.

The e-commerce case has a single dataset, requiring a
high-throughput, low-latency in-memory index. We used
compression to reduce the memory footprint considerably.

The email RAG case had 100s of thousands of partitions
each with relatively small (millions) of objects. This allowed
us to use separate indexes that are all disk-based.

How can you use
these learnings for your case?

What are the natural
partitions in your
dataset?

The first question to ask is:

Connect with us!

weaviate.io

weaviate/weaviate

@etiennedi
@weaviate_io

All illustrations and
visualizations that were
not created by our
awesome design team
(thank you!) were
generated with DALLE 3.

GenAI blooper reel

Connect with us!

weaviate.io

weaviate/weaviate

@etiennedi
@weaviate_io

All illustrations and
visualizations that were
not created by our
awesome design team
(thank you!) were
generated with DALLE 3.

