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How can we serve two very different 
billion-scale use cases with the same vector 

db?

e-commerce ⇔ email RAG

single-tenant ⇔ multi-tenant

billions of vectors per dataset ⇔ millions of datasets

in-memory indexes ⇔ disk indexes

query latency ⇔ cost per tenant

high-frequency updates ⇔ writes across tenants



E-commerce Search



How does the user 
interact with the app?



A prominently placed 
search bar starts the 
user journey.

A search can be pure 
text or faceted (e.g. 
within price ranges, 
specific attributes, etc.)

The user finds the most 
relevant products for 
their (semantic) query.
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What does the overall 
dataset look like?



There are no or few 
natural partitions in the 
dataset.

An incoming query is 
likely to hit an 
unpredictable 
subsection of the data.

Examples:

● “colorful summer 
dressˮ

● “professional video 
cameraˮ
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How does data flow?



Product changes are 
streamed in real-time 
from various external 
sources producing 
millions of updates 
every day.

Users query a single, 
unified dataset agnostic 
of where the data 
originally came from.

High amount of 
concurrent imports and 
queries – on a single 
dataset.



What is the scale? What 
are our targets?



Number of Objects/Vectors

110 billion
Desired query latency

p50200ms
p99500ms

Updates per day

10s of 
millions

Tenants / dataset partitions

1 or few



How do we fit the right tech?



HNSW is a graph-based 
approximate nearest 
neighbor ANN) vector 
index.

It is optimized for very 
low latency and high 
throughput.

It is somewhat costly to 
build and requires all 
vectors in memory to 
serve queries.



What does it mean to hold 10B 
vectors in memory?

Example: text-embedding-3−small with 1536d

1e10 * 1536 * 4Byte = 55TiB  



Product Quantization is 
a compression technique 
that can reduce the 
memory footprint of 
common vector 
embeddings 8-fold.

While using lossful 
compression, accuracy 
can be restored through 
disk-based rescoring of 
candidate vectors.



Can HNSW handle so many 
updates and deletes? 

Will it stay “fresh”?



Weaviateʼs HNSW 
implementation makes 
use of an in-place batch 
repair job.

As a result, it can tackle 
millions of updates and 
deletes per hour without 
sacrificing result quality.



Tech Summary



vCPUs
Constant updates / Freshness

High concurrent query throughput

Low-latency billion-scale search

In-memory vector index HNSW

Memory footprint reduced by 
compression PQ

Store and serve billions of objects

Auxiliary disk-based indexes 
(filtering, ranges, fuzzy matching)

All caches always “hot ,ˮ no need 
to offload to cloud storage.

Hot

Memory

Warm
SSD
Drives

Cold
Cloud 
Storage



Email RAG



How does the user 
interact with the app?



Email RAG is a classical 
AI-assistant or “Ask AIˮ 
style of feature.

The user pulls up the AI 
assistant on demand to 
gain insights into a 
personal dataset (in this 
case their email mailbox).
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What does the overall 
dataset look like?



The dataset has many 
natural partitions. A 
typical query can be 
narrowed down to 
exactly one such 
partition.

Example:

Jane searches through 
her emails with “when 
does my flight leave from 
SFO?ˮ

 generated with DALLE 3



How does data flow?



Nearly every mailbox 
receives at least one 
email per day.

The total number of 
emails per mailbox is 
low, but the overall 
volume is massive.

User behavior is 
sporadic. Follows 
business hours, many 
users have days where 
they donʼt query at all.



What is the scale? 
What are our targets?



Number of Objects/Vectors

110 billion
Desired query latency

p50200ms
p991000ms

Inserts per day

low millions Tenants / dataset partitions

100s of 
thousands



Tenant Size Distribution

number 
of 
tenants

vectors per 
tenant

100 1k 10k 100k 1M 1M

p50 = 50k
p90 = 100k
p95 = 300k
p99 = 1M
max = 3M



The flat index is a 
disk-based kNN index 
that can be combined 
with compression 
techniques such as 
Binary Quantization to 
turn it into an aNN index.

It excels with relatively 
small datasets, such as 
15M objects.



Tenant (mailbox) activity over 48h



Storage Tiers and their cost

$$$ Memory (HOT)
very fast, but very expensive

Cloud Storage (COLD)
cheap, but slow

SSD Drives (WARM)
medium speed, medium cost

$ slow

fast



Tech Summary



vCPUs

Hot

Memory

Warm
SSD
Drives

Cold
Cloud 
Storage

Individual indexes are small 1M 
per tenant)

Importing/update is cheap (no 
graph updates required)

Memory primarily acts as a cache to 
improve latency.

Sweet spot at fairly low numbers.

SSDs are the main workhorses 
here.

Best balance between import and 
query load.

Inactive or infrequently queried 
tenants reside in cold (cloud) 
storage.



Where do the cases overlap?



The overall amount of 
objects and vectors in 
both cases is somewhat 
similar (110bn range), 
yet the composition is 
very different.

Both cases require 
sub-second real-time 
latency to serve millions 
of users. 



Weaviate makes it very 
easy to integrate with 
other vendors in the 
embedding ecosystem.

For example, turning text 
to vectors using 
3rd-party vectorizers like 
OpenAI, Cohere, Ollama, 
etc works out of the box 
– optimized to max out 
your specific rate limit 
and provide great 
observability.



What’s next?



Full separation of storage and compute

Reverse GRPC Proxy 

Cloud Storage as Shared Integration point
S3, GCS, etc)

Ingest Query

Ingest Documents Queries

Importer
Validation, 

Auto-Schema

stores raw batch 
onto queue, no 

processing

ST
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S

Indexer
applies changes to 
shard, increases 

shard version

take item from 
queue

store final shard in 
shard bucket

Serving Nodes
Read-only Weaviate Nodes)

uses (local) SSDs as cache
serve all read queries
poll Cloud Storage for 

version updates
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CA
C

H
E

TEMPORARILY
STATEFUL

read shard as 
needed

poll cloud storage
for version updates of 
cached shards

evict unused shard 
to free up caches

Metadata Server
RAFT-based, schema + 
cluster metadata only

EBS

NVMe

Queries

redirect to correct nodevalidate, auto-schema, 
implicit tenant-creation



Recap



Weʼve looked at two billion-scale use cases that 
both require real-time latencies.

The e-commerce case has a single dataset, requiring a 
high-throughput, low-latency in-memory index. We used 
compression to reduce the memory footprint considerably.

The email RAG case had 100s of thousands of partitions 
each with relatively small (millions) of objects. This allowed 
us to use separate indexes that are all disk-based.



How can you use 
these learnings for your case?



What are the natural 
partitions in your 
dataset? 

The first question to ask is:



Connect with us!

weaviate.io

weaviate/weaviate

@etiennedi
@weaviate_io

All illustrations and 
visualizations that were 
not created by our 
awesome design team 
(thank you!) were 
generated with DALLE 3.
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