
Observation and Control 
of Distributed AI/ML 
Workloads in the Public 
Cloud using Clockwork

Clockwork Systems
Sept 26th, 2023

Vinay Sriram
Senior Software Engineer

The AI Conference 2023



Talk Overview

• Clockwork’s Product Suite:
Tools for edge-based observation and control

• Observing Distributed AI/ML Workloads: 
Analyzing NVIDIA’s model training communications primitives using 
Clockwork’s technology

• Speeding Up Distributed AI/ML Workloads:
Clockwork’s 2-step solution and evaluation on common benchmarks



Clockwork’s Product Suite



Clockwork’s Product Suite

• Monitor: Latency Sensei sets up a low-overhead, 
always-on “probe mesh” connecting each VM to 5 
others.▪ Sync all VM clocks highly accurately to a 

common reference 1

▪ Measure one-way-delays precisely

▪ Detect VM colocation

• Control: Based on accurate one-way-delay 
measurements, Packet Rocket can sense and control 
TCP traffic, providing a ”zero-drop” network 2

• The CW agent is installed on each machine.

1 Clock Sync: https://www.usenix.org/system/files/conference/nsdi18/nsdi18-geng.pdf

• No hardware support or upgrades needed!

2 Control: https://www.usenix.org/system/files/nsdi21-liu.pdf 

https://www.usenix.org/system/files/conference/nsdi18/nsdi18-geng.pdf
https://www.usenix.org/system/files/nsdi21-liu.pdf


Accurate Clock Synchronization (100s of ns)

Clockwork’s Product Suite

Precise One-Way-Delay Measurements

40 Hours

Network Traffic Off
P90: 100us of us

Network Traffic On
P90: 3ms-5ms

VM Colocation Detection

Host with 2 VMs

Host with 4 VMs

Host with 1 VM

Packet Rocket: “Zero-Drop” Network

PR Off
20,000+

PR On
~0



Using Clockwork for Distributed Training



Rent VMs/GPUs

Install CW 
Agents

Turn on 
Packet Rocket

(Congestion Control)

Monitor VM
Cluster

Current Practice for Cloud Tenants:

With Clockwork’s Software:

Run Workload

Rent VMs/GPUs Run Workload

Determine VM
Colocation; 
Select VMs



Buffer overflow

Retransmits,
Timeouts

Sender Receiver

Sender Receiver

OWD = T
Rx

 – T
Tx

OWD > Thresh ?

Pause (OWD – Thresh)

Pause

With 
Packet 
Rocket

Transport
Protocols 

Today

Packet Rocket: Congestion Control at the Edge



Observing AI/ML Workloads 
Distributed Across Hosts



NVIDA NCCL Primitives

• NVIDIA’s NCCL implements application primitives relevant for large model training (used, for 
example, in Microsoft’s DeepSpeed 1). These include all-reduce, all-gather, reduce-scatter, etc.

1 https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



8

17

16

8

3

5

111

17

17

17

17

17

NCCL Ring Implementation

• NCCL primitives are often 
executed using a ring-style 
communication pattern

• In all-reduce, 
components of the sum 
get passed around the 
ring until the sum is 
computed. Then, 
everyone gets the sum.

• The collective operation 
finish time is determined 
by the sum of the ring 
latencies



Clockwork Off

Clockwork On

Accurate time enables accurate app-level measurements.

Sender Receiver

TX
1

TX
2

RX
2

RX
1

• We have instrumented NCCL to log individual message send and receive timestamps.
• Accurate clocks allow us to match these into one-way-delay measurements.

Measurements on one-way delays can identify bottleneck links.

A
p

p
-L

ev
el

 M
es

sa
ge

 O
n

e-
W

ay
-D

el
ay

 (
m

s)



A
p

p
-L

ev
el

 M
es

sa
ge

 O
n

e-
W

ay
-D

el
ay

 (
m

s)
Clockwork’s colocation detector can explain bottlenecks.

• Colocated VMs can contend for hypervisor/physical machine 
resources, creating high queuing delays on the sender.



Clockwork’s colocation detector can explain bottlenecks.

• In the absence of colocation, the throughput bottleneck causing high queueing delay does not exist. 

A
p

p
-L

ev
el

 M
es

sa
ge

 O
n

e-
W

ay
-D

el
ay

 (
m

s) [Cluster with No Colocation]



Speeding Up AI/ML Workloads 
Distributed Across Hosts



Evaluation on NCCL Benchmarks:
Google Cloud



Experimental Setup

We ran nccl-tests 
(https://github.com/NVIDIA/nccl-tests), a popular 
set of benchmarks released by NVIDIA, on Google 
Cloud Platform.

Traffic between GPUs attached to the same host 
uses NVLink, traffic between GPUs attached to 
different hosts uses TCP/IP.

The experiment clusters contained 16 Hosts, each 
attached to two V100 GPUs.

VM Type: n1-standard-16

GPU: 
V100

GPU:
 V100

NVLink

VM Type: n1-standard-16

GPU: 
V100

GPU:
 V100

NVLink

TCP/IP over
 Ethernet

.

.

.

TCP/IP over
 Ethernet

https://github.com/NVIDIA/nccl-tests


Created 3 clusters of each type and ran the 
all-reduce task 5 times on each cluster.

Compared to a cloud-assigned cluster:

• A Clockwork-chosen cluster decreases by 
33% the median task completion time.

• A Clockwork-chosen cluster with Packet 
Rocket decreases by 61% the median 
task completion time; equivalently, TCP 
throughput increases by 2.6x.

Clockwork’s 2-step solution also reduces the 
variance in run times dramatically.

Performance on the all-reduce Communication Primitive

Run 0

Run 1

Run 2

Cloud-AssignedClockwork-Chosen with PR Clockwork-Chosen w/o PR



Packet Rocket improves completion time across the board on GCP

↓ 41.1%

↓ 40.0%
↓ 31.2%

↓ 37.7%

On each of the four NCCL tasks: (1) We ran 3 trials with PR and 3 trials without PR for 100 iterations of each. 
(2) There were two NCCL connections per node (one per GPU), and each NCCL connection used 10 threads.

[CW-Chosen Cluster] Packet Rocket alone produces a 31-41% decrease in benchmark completion time.



Performance on the all-reduce Communication Primitive
[CW-Chosen Cluster] Packet Rocket eliminates drops and significantly reduces delays. 

Packet Rocket Off Packet Rocket On

3-Sigma: 1ms – 2ms 3-Sigma: 100s of us

~230 Gbps
~400 Gbps



Packet Rocket reduces app-level delays.
A

p
p

-L
ev

el
 M

es
sa

ge
 O

n
e-

W
ay

-D
el

ay
 (

m
s)



Evaluation on the Ray Collective 
Communications Library: Google Cloud



Experimental Setup (Ray on GCP)

We ran the Ray collective communications library 
(https://docs.ray.io/en/latest/ray-more-libs/ray-collec
tive.html), which provides a set of primitives for Ray. 
NCCL is used as the communications backend for 
GPUs.

Traffic between GPUs attached to the same host uses 
NVLink, traffic between GPUs attached to different 
hosts uses TCP/IP.

The experiment clusters contained 16 Hosts (one head 
node and 15 additional workers), each attached to 
two V100 GPUs.

VM Type: n1-standard-16

GPU: 
V100

GPU:
 V100

NVLink

VM Type: n1-standard-16

GPU: 
V100

GPU:
 V100

NVLink

TCP/IP over
 Ethernet

.

.

.

TCP/IP over
 Ethernet

Ray Worker

Ray Worker

https://docs.ray.io/en/latest/ray-more-libs/ray-collective.html
https://docs.ray.io/en/latest/ray-more-libs/ray-collective.html


Created 2 clusters of each type and ran the 
all-reduce task (for 28 iterations) 3 times on 
each cluster.

Compared to a cloud-assigned cluster:

• A Clockwork-chosen cluster decreases by 
7.9% the median task completion time.

• A Clockwork-chosen cluster with Packet 
Rocket decreases by 26% the median 
task completion time.

Clockwork’s 2-step solution also reduces the 
variance in run times.

Performance Benefit on Ray CCL on GCP

Cloud-Assigned Clockwork-Chosen with PRClockwork-Chosen w/o PR



Key Takeaways

• Performance Optimizations for Distributed ML Workloads is a Hot Area:
▪ Hardware acceleration on GPUs and other accelerators
▪ Development of fundamental communication libraries (e.g., NCCL)
▪ Development of compute frameworks such as Ray

• Clockwork’s product suite can provide insights into network bottlenecks and increase 
observability

• Preliminary results from tests on Google Cloud have shown that Clockwork’s 2-step 
solution can significantly accelerate NCCL communications benchmarks (by 30%-60%) 

• When training large models on GPUs across hosts, communication can become a 
bottleneck in TCP/IP + Ethernet networks. Clockwork’s tech can help here.

• Looking for beta users for validation and collaboration!


