
Generative AI And
Programming

Peter Norvig

A Short History
of

Software Engineering

1945

1978

2014

2023

 1970s 2000s 2020s

● Optimize hardware Optimize programmer Assist user
● Low-level code High-level code Dialog: NL, code, diagrams, …
● Simple problems Complex problems Wicked problems
● Ad hoc Mathematical/Logical Natural science/empirical
● On your own Standard methodology Executable methodology

Q: How is
Automated Programming

used today?

A: (1) API lookup (pair programming)
 (2) Problem solving (solo programming)

Encapsulate as a function with signature
backspacer(s: str, t: str) →bool

Straight-line top-level code is harder to test

Name “t” re-used for two
different variables,

an int and a str

These 10 lines could be just:
a = list(reversed(input()))
b = list(reversed(input()))

“c” is set up as a stack to hold
elements popped off of “b”, but

then “c” is never used elsewhere

Doing b.pop() is an O(1)
operation. But b.pop(0) is O(n).
Shouldn’t have reversed lists!

Explain the code: comments and/or docstring

Python standard style is to surround
operators with spaces, e.g. “a = []”

These 5 lines could be just:
“else:
 a = a[2:]”

Usually, j iterates over ints,
not characters

One-letter variable names

Better Answer

“Here is a function to solve the problem. You can see tests and timing here, or
an informal argument for correctness here, or compare to a simpler but slower
version, or a faster but more complex version.”

Half the programmers
are below average

Q: How could
Automated Programming

be used tomorrow?

Automation throughout the SW Lifecycle

● Strategy: help define objectives
● Design: create and verify specifications
● Development: automatically write or

autocomplete code
● Testing: automate tests
● Deployment: gather feedback,

federated learning
● Maintenance: fast, correct updates,

retraining instead of re-coding and
re-releasing

Automation throughout the SW Lifecycle

