
Scalable End-to-End ML Platforms:
from AutoML to Self-serve

Presented by: Mia Garrard

Authored by: Igor L. Markov, Pavlos A. Apostolopoulos, Mia Garrard, Tianyu (Tanya) Qie, Yin Huang, Tanvi Gupta, Anika Li,
Cesar Cardoso, George Han, Ryan (Payman) Maghsoudian, and Norm Zhou

arXiv:2110.07554

https://arxiv.org/pdf/2302.14139.pdf

Agenda

01 Why self-serve?

02 Background & current landscape

03 Example platforms: Looper & PEX
(Personalized Experiment)

04 Requirements to achieve “Self-serve”

05 Improvements and Deployment Experience

06 Discussion

01 Why Self-serve ML Platforms?

Self-serve ML platforms

- Enable dramatic scaling of adoption of ML platforms by both subject
matter experts and novices

- Directly drive business value by expanding the use of ML to previously
untapped applications via reuse of ML capabilities and infrastructure with
high client productivity

- Development requires:
- AutoML techniques
- Platform integration
- Online testing of models and policies

01 Why Self-serve?

From April 2022 Meta Blog post on Looper & PEX: ai.meta.com/blog/looper-meta-ai-optimization-platform-for-engineers/

https://ai.meta.com/blog/looper-meta-ai-optimization-platform-for-engineers/

Expanding Impact of ML via Self-serve

- The value proposition of “self-serve” end-to-end ML platforms:
- Shared engineering effort (new technologies, regular platform maintenance,

and system upgrades) helps customers focus on applications
- Supported by AutoML by scaling configuration and optimization

- Integration with related platforms and infrastructure furthers the impact
of these platforms, and platform impact is directly related to
economies of scale enabled by the self-serve quality.

01 Why Self-serve?

02 Background & Current Landscape

AI and ML usage across industry is pervasive
- AI is leveraged by almost all 600 companies, per CIO Vision 2025 survey conducted by

MIT Technology Review
- an overwhelming majority of those surveyed are not AI driven companies → early stages of

adoption

02 Background & Current Landscape

- Common concerns on how to scale up the use
of AI and speed up AI development

- Enablement and scaling AI and ML use cases
across a wide variety of applications is seen
as mission critical by survey respondents

https://www.technologyreview.com/2022/09/20/1059630/cio-vision-2025-bridging-the-gap-between-bi-and-ai/

Shifting the focus from Kaggle paradigm → MLOps

- Goal is typically to train a model to minimize a loss
function

- Drives ML architecture development,
optimization algorithm creation

- Overlooks implementation & runtime tradeoffs
- Model size, inference latency

02 Background & Current Landscape

MLOps field broadens the evaluation of new ML
model architectures and algorithms in the context
of implementation and runtime trade-offs

Source: Wikipedia MLOps entry

Source: Wikipedia Kaggle platform entry

https://en.wikipedia.org/wiki/MLOps
https://en.wikipedia.org/wiki/Kaggle

ML Platform Development
ML platforms often support and automate workflows that train ML models on data to perform prediction,
estimation, ranking, selection, and other ML tasks

02 Background & Current Landscape

End-to-end ML platforms

- Support workflows with a broader scope including data collection and
preparation as well as tracking and optimization of product-impact metrics to
drive business value

- Integration with A/B testing is critical for product

metric tracking

- Automate data collection + model retraining

- Can be general or specialized

02 Background & Current Landscape

Source: Wikipedia A/B testing entry

https://en.wikipedia.org/wiki/A/B_testing

AutoML & E2E ML Platforms
- AutoML frameworks

- are pervasive across industry
- provide a consistent interface that supports interchangeability, composition, ML pipeline

management, and live-product experimentation

02 Background & Current Landscape

- Using AutoML frameworks in e2e ML platforms
is critical

- Help manage ML lifecycle
- Removing need for ML coding via integration with

platform provides AutoML solution

- This is why our overall strategy in this work focuses
on pervasive use of AutoML techniques, platform
integration, and online testing.

03 Example Platforms: Looper & PEX

Usage of Looper & PEX platforms at Meta

- ~100 product teams leverage for product metric improvement

- 3-4 million AI outputs per second

- Hundreds of use cases with wide variety of applications

- Specialize in tabular data

03 Example Platforms: Looper & PEX

Looper

03 Example Platforms: Looper & PEX

Figures from “Looper: an end-to-end ML platform for product decisions”

- General purpose e2e ML platform

- Supports many ML tasks: classification, regression, ranking, decision
making with Contextual Bandits/Reinforcement Learning

- Requires no ML experience

- Typical time to launch: ~1 month (vs. several months for traditional ML
development cycle)

https://arxiv.org/pdf/2110.07554.pdf

Looper: a General-purpose Platform

03 Example Platforms: Looper & PEX

Figures from “Looper: an end-to-end ML platform for product decisions”

https://arxiv.org/pdf/2110.07554.pdf

Personalized Experiment (PEX): a Specialized Platform

- Specialized platform enabling product teams to leverage heterogeneous treatment
effects to optimize end-user experience at the individual level

- Optimizes directly for product metrics, as opposed to ML metrics (such as loss function)

- Supports HTE meta-learners and RL models

- Leverages decision policy tuning via offline(counterfactual-based)/ online Bayesian
Optimization via the Adaptive Experimentation platform (open source: Ax)

- Requires no ML experience

03 Example Platforms: Looper & PEX

Personalized Experiment (PEX)

03 Example Platforms: Looper & PEX

Figures from “Interpretable Personalized Experimentation”

https://arxiv.org/pdf/2111.03267.pdf

Commonalities between Looper & PEX

- Full custody of data from automatic data collection to causal model
evaluation by means of A/B testing with product metrics

- Different context and APIs, but result is simplified maintenance, reduced engineering
effort by eliminating known pitfalls with data collection

- Customers are not required to define or implement new model types
- Select from a variety of model types manually or automatically,

with no ML code needed from customers

- Both platforms are config driven, maintain reproducible ML models,
and regularly retrain models to adapt to data drift

- Automatic model evaluation and promotion of models

03 Example Platforms: Looper & PEX03 Example Platforms: Looper & PEX

04 Requirements to achieve “Self-serve”

Data & Product Impact in Self-serve

- Data handling: platforms should maintain full custody of data throughout the ML
lifecycle

- Prevents potential human errors
- Saves manual effort of data pipelining and evaluation

- Product impact evaluation and optimization: platforms should be able to
conduct (1) observational tasks and (2) interventional tasks

- Observational tasks: evaluate, learn, and model the impact of AI outputs on product
end-metrics

- Interventional tasks: optimize prediction mechanisms (models, decision policies) to
improve product metrics

- Leveraging counterfactual policy evaluation and online experimentation (A/B
Tests) within the platform automates metric related needs

04 Requirements to achieve “Self-serve”

10 Requirements for Self-serve

1. Low cognitive barrier to entry and low requirements for ML experience
a. UI avoids unnecessary dependencies on ML, platform, and data science concepts and explains

them via tooltips when unavoidable
b. “Hide” as many routine tasks behind automation as possible

2. Automated data collection from applications and customization of subsequent
data preprocessing

a. Normalization, outlier removal, data imputation, down/up sampling, etc
3. AutoConf

a. Automated selection of ML problem foculation, ML tasks (ranking, classification,etc), model type
and default parameters

b. Followed by workflow automated traditional AutoML (parameter selection, network architecture,
search, etc)

4. Product-impact metrics – tracking and automatic optimization, support for:
a. Counterfactual policy evaluation
b. Online casual evaluation (such as A/B testing)

04 Requirements to achieve “Self-serve”

10 Requirements for Self-serve

5. Sufficient ML Quality with limited manual configuration and optimization effort
a. Comparisons are made to custom AI solutions and AutoML tools/services

6. Full management of hosting of data, models, and other components with
modest resource utilization

7. Adaption to data drift (calibration & retraining) to ensure model freshness
8. Resilience and robustness to disruptions in data and system environment

with minimal recurring customer-side maintenance effort
a. Includes delayed/missing data, resource limitations/outages in the system, etc

9. Customer-facing monitoring and root-causing of customer errors
10. Scalable internal platform maintenance and white-glove customer support

04 Requirements to achieve “Self-serve”

04 Requirements to achieve “Self-serve”

6 Additional Capabilities (depending on application)

1. Open architecture
a. Offer platform components and partial workflows individually → servers more advanced customers

2. Customizations to common ML tasks
a. Succinct high-level APIs that use relevant concepts, support relevant model arch, loss functions,

regularizations, output constraints, diagnostics, etc (ex: ranking and selection)
3. Reproducibility of models

a. All necessary code and data are available, or comparable data is available
4. Meta-learning, including transfer learning

a. Automatically choosing learning parameters, reusing and adapting trained models to new
circumstance

5. Interpretable ML model
a. Provide platform clients insight into model behavior without understanding model internals

6. Fairness in ML
a. Address various ways to evaluation fairness and ways to train ML models to improve those metrics

04 Requirements to achieve “Self-serve”

04 Requirements to achieve “Self-serve”

05 Improvements and Deployment Experience

Metric Improvement via automated updates to ML models
and Decision Policies

- Saves ≥ 2 weeks/use case of eng time to run validation experiments

- Enables automatic online experiments for re-tuning of decision policies

- Increases client trust via accurate tracking and optimization of their goals

- Delivers repeated product metric improvement
- Example: a use case which determines whether to prefetch certain content (stories, posts,

reels, etc) to a given device (smartphone, etc) launched a newly tuned decision polices
which improved top-line product metrics for different device types with overall success of
0.73% with neutral computational cost

05 Improvements and Deployment Experience

Empirical validation: Client-driven PEX Improvement

- Product team evaluation of PEX vs Hand-tuning vs ML tool-box and
selection of PEX

- Interested in (1) necessary time investment and (2) product metric performance
- PEX outperformed the tool across the time and metric axises
- PEX performed slightly worse than hand tuning with respect to metric impact, but

significantly better wrt time investment: ~2-3 weeks of active eng time vs 6 months

- Customer survey results
- 6/6 customers had at least some unfamiliarity with ML concepts
- 6/6 indicated strong interest in self servability of the platform
- Results highlighted need for more “complex” decisions to be further automated

- Drove creation of base set of features automatically included in PEX use cases

05 Improvements and Deployment Experience

06 Discussion

Trade-offs

- Platform engineering team development prioritization necessitates balance
between customization and development of widely applicable features

- Some highly specialized but highly impactful applications may require too much customization to
benefit from a generalizable self-serve ML platform

- Seasoned ML engineers may benefit from automation of boring or error-prone
routines, but will generally have less direct control than they are accustomed to
having during development cycle

- Supports our stance for open-architecture end-to-end ML platforms

06 Discussion

Benefits of end-to-end self-serve ML platforms

- Shifts focus from performance of ML model (ie loss function optimization)
to product metric performance

- Democratizes use of ML techniques beyond ML experts

- Impact grows with economy of scale usage of these platforms

- Wide adoption of platforms enables usage of integrated ML techniques

06 Discussion

Scalable End-to-End ML Platforms: from AutoML to Self-Serve

https://arxiv.org/pdf/2302.14139.pdf

