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- LLMs: easy to demo, hard to productionize
- [Poll] Learned a few lessons we want to share
- Challenges & overcoming them

- Cost
- Data, Privacy
- Deployment complexity

- What does the future hold so we can prepare? 
- Applications are not a single LLM call
- RAG will be the default way enterprises use LLMs
- Fine tuning for cost reduction

Key Takeaways



- Company behind the Open Source project Ray
- Widely used Scalable AI Platform used by many 

companies
- What scalable means:

- Distributed: Up to 4,000 nodes, 16,000 GPUs
- Efficient: Keep costs down by efficient resource mgmt
- Reliable: Fault tolerant, highly available

- Widely used by GenAI companies e.g. OpenAI, Cohere
- ChatGPT trained using Ray

Who is Anyscale? Why should you listen to us? 





Why Ray?

12x
faster

50% 40%
cheaper cheaper

90%
cheaper

5x 30%
faster cheaper



We provide LLMs as a service (Llama models)

We use LLMs to make our products better

We help our customers deploy LLMs on Ray and on the 
managed version of Ray (Anyscale Platform) 

What’s our experience with LLMs? 



Anyscale Endpoints
LLMs served via API

LLMs fine-tuned via API

Anyscale Endpoints

Llama2 70B
Codellama 34B $1.00

Llama2 13B $0.25

Llama2 7B $0.15

LLM Serving Price
(per million tokens)

endpoints.anyscale.com



Anyscale Endpoints
Cost efficiency touches every layer of the stack

Anyscale Endpoints

Single GPU optimizations

Multi-GPU modeling

Inference server

Autoscaling

Multi-region, multi-cloud

$1 / million 
tokens

(Llama-2 70B)



End-to-end LLM privacy, customization and control

Anyscale Endpoints
LLMs served via API

LLMs fine-tuned via API

Serve your LLMs from your Cloud

Fine-tune & customize in your Cloud
Anyscale Private 
Endpoints

Cost Quality



How all the pieces fit together

AI app serving & routing

Model training & continuous tuning

Python-native Workspaces

GPU/CPU optimizations

Multi-Cloud, auto-scaling

Anyscale AI Platform

Anyscale Endpoints
LLMs served via API

LLMs fine-tuned via API

Ray AI Libraries Ray CoreRay Open Source

Serve your LLMs from your Cloud

Fine-tune & customize in your Cloud
Anyscale Private 
Endpoints



Endless possibilities for AI innovation.

AI app serving & routing

Model training & continuous tuning

Python-native Workspaces

GPU/CPU optimizations

Multi-Cloud, auto-scaling

Anyscale AI Platform

Anyscale Endpoints
LLMs served via API

LLMs fine-tuned via API

Ray AI Libraries Ray CoreRay Open Source

Serve your LLMs from your Cloud

Fine-tune & customize in your Cloud
Anyscale Private 
Endpoints
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Merlin
“We use Anyscale Endpoints to power 
consumer-facing services that have 
reach to millions of users … Anyscale 
Endpoints gives us 5x-8x cost 
advantages over alternatives, making 
it easy for us to make Merlin even more 
powerful while staying affordable for 
millions of users.” 

Some quotes from our customers

Realchar.ai
“Realchar.ai is about delivering 
immersive, realistic experiences for our 
users, not fighting infrastructure or 
upgrading open source models. 
Endpoints made it possible for us to 
introduce new services in hours, instead 
of weeks, and for a fraction of the cost of 
proprietary services. It also enables us 
to seamlessly personalize user 
experiences at scale.”



What makes it hard to go from demo 
to production?



- Not hallucinating 
(TL;DR use RAG) 

- Knowing your relevance, consistency meets the bar 
(TL;DR automated evaluation using GPT-4)

- Cost
- Data
- Vendor Lock-in
- Deploying LLMs

Going from Demo to Production

Jerry 
& Harrison 

got you covered



You provide software for summarizing long email threads

You’ve written this in LangChain and/or LlamaIndex

You use GPT-4 with “safe” emails – results look good!

What stops you from productionizing? 

From Demo to Production: Case Study



GPT-4 is Expensive – 30x Llama 70b for similar performance

Cost



Onboarding (50,000 threads, each thread is 1,000 words)

How much to onboard each user to email summaries? 
GPT-4: $2,740
Llama 2: $95

Daily (100 threads, each thread is 1,000 words)
GPT-4: $5.48
Llama 2: $0.19

Cost



LLMs good at summarizing (they trounce hand-built systems)

Most LLMs will produce text that coherent, fluent and relevant

What is the main differentiator between a good summary and a 
bad summary using LLMs?

Factual correctness

Cost and Quality simultaneously?  



Summary Ranking established in literature. 

“insiders say the row brought simmering 
tensions between the starkly contrasting 
pair -- both rivals for miliband's ear -- 
to a head.”

A: insiders say the row brought tensions between 
the contrasting pair.

B: insiders say the row brought simmering tensions 
between miliband's ear.

Example of comparable quality: Factuality eval





For the summarization task, LLama 70b is about as good as 
GPT-4 (on factuality)

Dropping to GPT-3.5-Turbo doesn’t work, significant drop in 
quality

Llama 2 70b costs 30x less

Result



A small fine-tuned open source model 

can outperform the best available general model 

in some cases

The Power of Fine-tuning in Cost Reduction





Anyscale Endpoints - fine-tuning

Llama-2-7B GPT-4

Superior task-specific performance at 1/300th the cost of GPT-4.

fine-tuned

3%

78%
86%



- APIs are easy 
- Anyscale Endpoints is OpenAI API compatible.

- But: 
- ChatGPT follows instructions
- Llama 2 doesn’t always do as well
- Hypothesis: OpenAI does a lot of RLHF

(reinforcement learning w/ Human Feedback)
- We still use GPT-4 a lot

- Hard queries
- Evaluation

There is still a price to be paid



What we asked for: Please give an A or a B. 
What we got from GPT-4: A
What we got from Llama 2 70b: 
‘The correct answer is A: those who receive centrelink payments made up half of radio rental's 
income last year. Explanation: Summary A accurately summarizes the article sentence by 
mentioning that those who receive centrelink payments made up half of radio rental's income 
last year. It maintains the same meaning and information as the original sentence. On the other 
hand, Summary B is inconsistent with the article sentence. It suggests that the ABC's report 
only mentioned that those who receive centrelink payments made up radio rental's income last 
year, which is not entirely accurate. The article sentence explicitly states that the ABC reported 
that those who receive centrelink payments made up half of radio rental's income last year. 
Therefore, Summary A is the better choice’.

Instruction following



Function Templates
Convert the text below into one that calls a Python function. 

The function is find_flights(departure_city, arrival_city,time, date, class)

Convert to the appropriate city code using another function city_code(str) that 
returns the city code for a given city. 

“Hi. I'd like to book a flight to SF from Boston on Wednesday 20 September in the 
evening. Business class.”
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Llama 13B output: 

find_flights(Boston, 
            San_Francisco, 
            “2023-09-20”, 

  “18:00”, 
            “business”)

Does this parse? 
- No, first two parameters are variables, should have quotes
- Didn’t use city_code function
- Decided 6pm was evening

30



Vs OpenAI strictly defined templates
"functions": [{
  "name": "find_flights",
  "description": "template to find flights.",
  "parameters": {
     "type": "object",
     "properties": {
        "from_city_code": {
           "type": "string",
           "description": "Three letter code for the city"
      }, ...
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 vs Proprietary (OpenAI)

find_flights(city_code(“Boston”),
             city_code(“San Francisco”), 

   “2023-09-20”, 
             “evening”, 
             “business”)

                        

32



Are you comfortable sending your company’s emails to 
OpenAI? Not trying to FUD but customers have expressed 
concerns. 

Are you worried about explaining to your users that you are 
sending the data to OpenAI? 

Are there restrictions you have (e.g. in-country 
requirements or GDPR) that apply?  

Data and Privacy



Proprietary Pros
- Best quality models overall

- Simplicity

- Better instruction following

- Newest features
- Large Context Windows

- Function Templates

Making some tough decisions
Open Model pros
- Many more options

- Cost saving via: 
- Cheaper models

- Fine tuning benefits

- Deployment flexibility help w/ 
data + privacy

- No vendor lock-in



Consequence of the first two problems

Where and how do you run your LLMs if not OpenAI

LLMs are not always small models

Llama 2 70b takes 4x A100 80GB GPUs to deploy

Deployment complexity



github.com/ray-project/ray-llm
Open source
Built on top of Ray Serve
Supports: 

- Streaming
- Autoscaling

vLLM also good, but only single machine 

text-generation-inference used to be open source, but since 0.94 closed

Self-Hosted Software



Llama 2 7B: One g5.2xlarge is ~$7000/yr
- Can do ~700 tokens/s
- No autoscaling or redundancy

Llama 2 70B: 
- You need 4x A100 80GB – if you can get them
- Lambda Labs: $2/GPU so we’re talking $70,000/yr.
- Break-even point: 70 billion tokens vs public endpoints

Self hosted Llama 2 Models



Anyscale Private Endpoints
Give us AWS credentials (locked down)
We run in your cloud
Handles autoscaling, observability, updates etc

“Assisted” Self-Hosted: A new option



Anyscale Endpoint ($1 / million tokens) 
Fireworks.ai (~about the same price)

Offer OpenAI compatible APIs

More flexibility, e.g. can serve fine tuned models at different 
sizes

Public Open Source Serving



- Cost is a major concern. 

- Open Models give you options for saving money without 
decreasing quality, though they are not as polished. 

- Open Models give you control on data – the AI can 
come to your data instead of the data going to your AI. 

- Range of LLM deployment options each with different 
pros and cons (self-hosted, assisted self-hosted, 
managed, public)

Concluding on the difficulties



What does the future hold? 



3 things I predict are coming

One task requires many LLM calls and many LLMs 
(fine-tuned vs general, small vs large, open vs proprietary)

RAG will be default use of LLMs in enterprises

We haven’t fully solved the model improvement over time. 
Someone has to crack this



Anyscale Doctor

User Input Summarize Categorize

Dependency 
Error

Python Error

Infra Error
🦙🦙
70B

🦙🦙
70B

🦙🦙
Code

🦙🦙
Code

🦙🦙 
Code    QA

🦙🦙 
Code    QA



- Separate knowledge from synthesis
- Use search, vector database, tools etc for factual 

information
- Fine tuning does not help with facts
- Still some rough points with RAG

- Precision and Recall of search  results
- Expensive because of long context

Retrieval Augmented Generation



Vector DB

Query

OSS LLMs

Response

Retrieved 
contexts

Embedding 
model

Supervised 
classifier

ChatGPT

1

2

3

4

5

Ray Assistant



- LLMs: easy to demo, hard to productionize
- Challenges

- Cost
- Data, Privacy
- Deployment complexity
- Future optionality

- What does the future hold? 
- Applications are not a single LLM call
- RAG will be the default way enterprises use LLMs
- Not enough thought so far into closing the loop

Key Takeaways



- How do you correct an LLM?
- Definitely not fine tuning
- RAG … but that feels indirect
- A corrections vector DB? 
- Need to really think more broadly around domain 

specific model refinement

Not enough thought so far into closing the loop



A more holistic approach



1. Prototype with GPT-4 (or Claude if you need big context windows). 
If GPT-4 doesn’t work, nothing else is likely to.

2. One LLM call does one job. Don’t ask an LLM to summarize and 
classify. Do 2 llm calls, one to summarize one to classify. 

3. Llama 2 70b can be useful as a “day to day” LLM if you remember 
Rule 2. GPT-4 is less sensitive to dual tasks.

4. Fine tuning is for form, not facts. RAG is for facts. 

5. If you can, avoid self-hosting. It’s more difficult than it looks, esp 
multi-GPU LLMs like Llama 70b. If you have to, use ray-llm.

Bonus: Waleed’s Hard-won Heuristics



- LLMs: easy to demo, hard to productionize
- Learned a few lessons we want to share
- Challenges & overcoming them

- Cost
- Data, Privacy
- Deployment complexity

- What does the future hold so we can prepare? 
- Applications are not a single LLM call
- RAG will be the default way enterprises use LLMs
- Fine tuning for cost reduction

Key Takeaways



Thank You! 

Endpoints: endpoints.anyscale.com
RayLLM: github.com/ray-project/ray-llm
Details: anyscale.com/blog
Numbers: llm-numbers.ray.io
Ray: ray.io
Anyscale: anyscale.com

Me: mwk@anyscale.com


