
Evaluating and Optimizing your RAG App
Jerry Liu, LlamaIndex co-founder/CEO 



RAG



Context

● LLMs are a phenomenal piece of technology for knowledge generation and 
reasoning. They are pre-trained on large amounts of publicly available data.

Use Cases
Question-Answering

Text Generation
Summarization

Planning

LLM’s



Context

● How do we best augment LLMs with our own private data?

Use Cases
Question-Answering

Text Generation
Summarization

Planning

LLM’s

API’sRaw Files

SQL DB’sVector Stores

?



Paradigms for inserting knowledge

Fine-tuning - baking knowledge into the weights of the network

LLM

Before college the two main things 
I worked on, outside of school, 
were writing and programming. I 
didn't write essays. I wrote what 
beginning writers were supposed to 
write then, and probably still are: 
short stories. My stories were 
awful. They had hardly any plot, 
just characters with strong feelings, 
which I imagined made them 
deep...

RLHF, Adam, SGD, etc.



Paradigms for inserting knowledge

Retrieval Augmentation - Fix the model, put context into the prompt

LLM

Before college the two main 
things I worked on, outside of 
school, were writing and 
programming. I didn't write 
essays. I wrote what 
beginning writers were 
supposed to write then, and 
probably still are: short 
stories. My stories were awful. 
They had hardly any plot, just 
characters with strong 
feelings, which I imagined 
made them deep...

Input Prompt

Here is the context:
Before college the 
two main things…

Given the context, 
answer the following 
question:
{query_str}



LlamaIndex: A data framework for LLM applications

● Data Management and Query Engine for your LLM application
● Offers components across the data lifecycle: ingest, index, and query over data

Data Ingestion 
(LlamaHub 🦙) Data Structures Queries

● Connect your existing 
data sources and data 
formats (API’s, PDF’s, 
docs, SQL, etc.)

● Store and index your 
data for different use 
cases. Integrate with 
different db’s (vector 
db, graph db, kv db)

● Retrieve and query over 
data

● Includes: QA, 
Summarization, Agents, 
and more





RAG Stack



Current RAG Stack for building a QA System

Vector 
Database

Doc

Chunk

Chunk

Chunk

Chunk

ChunkChunkChunk LLM

Data Ingestion / Parsing Data Querying

5 Lines of Code in LlamaIndex!



Current RAG Stack (Data Ingestion/Parsing)

Vector 
Database

Doc

Chunk

Chunk

Chunk

Chunk

Process: 
● Split up document(s) into even chunks. 
● Each chunk is a piece of raw text.
● Generate embedding for each chunk (e.g. 

OpenAI embeddings, sentence_transformer)
● Store each chunk into a vector database



Current RAG Stack (Querying)

Vector 
Database

ChunkChunkChunk LLM

Process: 
● Find top-k most similar chunks from vector 

database collection
● Plug into LLM response synthesis module 



Current RAG Stack (Querying)

Vector 
Database

ChunkChunkChunk
LLM

Process: 
● Find top-k most similar chunks from vector 

database collection
● Plug into LLM response synthesis module 

Retrieval Synthesis



Challenges with “Naive” RAG



Challenges with Naive RAG

● Failure Modes
○ Quality-Related (Hallucination, Accuracy)
○ Non-Quality-Related (Latency, Cost, Syncing)



Challenges with Naive RAG (Response Quality)

● Bad Retrieval
○ Low Precision: Not all chunks in retrieved set are relevant

■ Hallucination + Lost in the Middle Problems
○ Low Recall: Now all relevant chunks are retrieved.

■ Lacks enough context for LLM to synthesize an answer
○ Outdated information: The data is redundant or out of date.



Challenges with Naive RAG (Response Quality)

● Bad Retrieval
○ Low Precision: Not all chunks in retrieved set are relevant

■ Hallucination + Lost in the Middle Problems
○ Low Recall: Now all relevant chunks are retrieved.

■ Lacks enough context for LLM to synthesize an answer
○ Outdated information: The data is redundant or out of date.

● Bad Response Generation
○ Hallucination: Model makes up an answer that isn’t in the context.
○ Irrelevance: Model makes up an answer that doesn’t answer the question.
○ Toxicity/Bias: Model makes up an answer that’s harmful/offensive. 



What do we do? 

● Data: Can we store additional information beyond raw text chunks?
● Embeddings: Can we optimize our embedding representations?
● Retrieval: Can we do better than top-k embedding lookup?
● Synthesis: Can we use LLMs for more than generation? 

But before all this…

We need a way to measure performance



Evaluation



Evaluation

● How do we properly evaluate a RAG system?
○ Evaluate in isolation (retrieval, synthesis)
○ Evaluate e2e 

● Open question: which one should we do first?

Vector 
Database

ChunkChunkChunk
LLM

Retrieval Synthesis



Evaluation in Isolation (Retrieval)

● Details: Evaluate quality of 
retrieved chunks given user 
query

● Collect dataset
○ Input: query
○ Output: the “ground-truth” 

documents relevant to the query
● Run retriever over dataset
● Measure ranking metrics

○ Success rate / hit-rate
○ MRR
○ Hit-rate



Synthetic Dataset Generation for Retrieval Evals
1. Parse / chunk up text corpus
2. Prompt GPT-4 to generate questions 

from each chunk (or subset of chunks)
3. Each (question, chunk) is now your 

evaluation pair! 

22



Evaluation E2E

● Details: Evaluation of final generated 
response given input

● Collect dataset
○ Input: query
○ [Optional] Output: the “ground-truth” answer

● Run through full RAG pipeline
● Collect evaluation metrics:

○ If no labels: label-free evals
○ If labels: with-label evals



Synthetic Dataset Generation for E2E Evals
1. Parse / chunk up text corpus
2. Prompt GPT-4 to generate questions 

from each chunk
3. Run (question, context) through GPT-4 

→ Get a “ground-truth” response
4. Each (question, response) is now your 

evaluation pair! 

24



LLM-based Evaluation Modules
● GPT-4 is a good human grader
● Label-free Modules

○ Faithfulness: whether response 
matches retrieved context

○ Relevancy: whether response 
matches query

○ Guidelines: whether response 
matches guidelines

● With-Labels
○ Correctness: whether response 

matches “golden” answer. 

25

https://www.databricks.com/blog/LLM-auto-eval
-best-practices-RAG

https://arxiv.org/pdf/2306.05685.pdf

https://www.databricks.com/blog/LLM-auto-eval-best-practices-RAG
https://www.databricks.com/blog/LLM-auto-eval-best-practices-RAG
https://arxiv.org/pdf/2306.05685.pdf


Techniques for Better Performing RAG



Decouple Embeddings from Raw Text Chunks

Raw text chunks can bias your embedding representation with filler content (Max Rumpf, sid.ai) 



Solutions:

● Embed text at the 
sentence-level - then 
expand that window 
during LLM synthesis

Small-to-Big Retrieval



Solutions:

● Embed text at the 
sentence-level - then 
expand that window during 
LLM synthesis

Small-to-Big Retrieval

Sentence Window Retrieval (k=2)

Naive Retrieval (k=5)

Only one out of the 5 chunks is relevant 
- “lost in the middle” problem



Solutions:

● Embed “references” to text chunks instead of the text 
chunks directly.

● Examples
○ Smaller Chunks
○ Metadata
○ Summaries

● Retrieve those references first, then the text chunks.

Embed References to Text Chunks 



Summaries → documents

● Embed larger documents via summaries. First retrieve 
documents by summaries, then retrieve chunks within those 
documents

Organize your data for more structured retrieval
(Recursive Retrieval)



Organize your data for more structured retrieval
(Metadata)
● Metadata: context you can inject into 

each text chunk
● Examples

○ Page number
○ Document title
○ Summary of adjacent chunks
○ Questions that chunk can answer (reverse 

HyDE)
● Benefits

○ Can Help Retrieval
○ Can Augment Response Quality
○ Integrates with Vector DB Metadata Filters

We report the development of GPT-4, 
a large-scale, multimodal…

{“page_num”: 1, “org”: “OpenAI”} Metadata

Text Chunk

Example of Metadata



Organize your data for more structured retrieval
(Metadata Filters)
Question: “Can you tell me about Google’s R&D initiatives from 2020 to 2023?”

● Dumping chunks to a single collection doesn’t work.

Single Collection of 
all 10Q Document 

Chunks

2020 10Q chunk 4

top-4 2020 10Q chunk 7

2021 10Q chunk 4

2023 10Q chunk 4

No guarantee you’ll 
return the relevant 
document chunks!

query_str: 
<query_embedding>



Question: “Can you tell me about Google’s R&D initiatives from 2020 to 2023?”

● Here, we separate and tag the documents with metadata filters.
● During query-time, we can infer these metadata filters in addition to semantic query.

2020 10Q

2021 10Q

2022 10Q

2023 10Q

2020 10Q chunk 4

2021 10Q chunk 4

2022 10Q chunk 4

2023 10Q chunk 4

query_str: 
<query_embedding>

Metadata tags: 
<metadata_tags>

Organize your data for more structured retrieval
(Metadata Filters)



● Organize your data hierarchically 
○ Summaries → documents
○ Documents → embedded objects 

(Tables/Graphs)

Organize your data for more structured retrieval
(Recursive Retrieval)



Summaries → documents

● Embed larger documents via summaries. First retrieve 
documents by summaries, then retrieve chunks within those 
documents

Organize your data for more structured retrieval
(Recursive Retrieval)



Documents → Embedded Objects

● If you have embedded objects in your PDF 
documents (tables, graphs), first retrieve 
entities by a reference object, then query 
the underlying object.

Organize your data for more structured retrieval
(Recursive Retrieval)



Production RAG Guide
https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/dev_practices/production_rag.html

https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/dev_practices/production_rag.html


Fine-Tuning



Fine-tuning

You can choose to fine-tune the embeddings or the LLM



Fine-tuning (Embeddings)

Generate a synthetic query dataset from raw text chunks using LLMs

NOTE: Similar process to generating an evaluation dataset!

Credits: Jo Bergum, vespa.ai



Fine-tuning (Embeddings)

Use this synthetic dataset to finetune an embedding model.

● Directly finetune sentence_transformers model
● Finetune a black-box adapter (linear, NN, any neural network)



Fine-tuning a Black-box Adapter



Fine-tuning (LLMs)

Use OpenAI to distill GPT-4 
to gpt-3.5-turbo

● Final response 
generation

● Agent intermediate 
reasoning



Finetuning Abstractions in LlamaIndex
https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/finetuning.html

https://gpt-index.readthedocs.io/en/latest/end_to_end_tutorials/finetuning.html

