# Generative AI: understanding limitations opens new possibilities

Igor L. Markov

Meta

Opinions expressed are my own

**Meta** 



## 2023: A wild rollercoaster of media coverage

- ChatGPT at 100M active monthly users
- Media: GenAI a threat to Google search!
- NYT: A Bing conversation goes off-rails
- "A threat to humankind!"
- Italy banned ChatGPT for GDPR violations
- Media: OpenAI losses widen to \$540M
- Public APIs for app integration
- Media: GPT-4 quality and traffic dropped in May-June
- Llama-2 OSSed, with weights, tuning & inference, free for commercial use
- Tom Cruise negotiated AI use with movie studios before the SAG strike



# Many open questions!

- Can you reliably tell AI outputs from human outputs?
- Can you ever trust AI outputs?
- Will AI destroy the humanity?
- What hype to avoid?
- What Gen AI framework to use?
- Which applications can be disrupted by GenAI?

To answer, study limitations and ways around them

Media: OpenAl Quietly Shuts Down Al Text-Detection Tool Over Inaccuracies

# Outline

- Basic concepts
- Limitations
- Ways to circumvent them
- Understanding limitations opens new possibilities

# Predicting the near future for fun and profit (tasks, techniques, quality, utility)

| Imaginary prediction tasks                                      | Predict based on                                          | Error size                                                              | Error frequency | Monetizable?                                          |
|-----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|-----------------|-------------------------------------------------------|
| Airplane's position<br>in 5 mins                                | Preceding data,<br>linear regression,<br>flight plan, etc | small                                                                   | small           | Too<br>straightforward                                |
| Fair-coin toss outcome 🔘                                        | x                                                         | N/A                                                                     | negotiable      | ✓; but infeasible                                     |
| 23456.3 * 68203.7 = <b>?</b>                                    | Direct calculation, no data                               | 0                                                                       | 0               | commodity                                             |
| S&P500 next day: ↑ or ↓<br>?                                    | Data, algorithms, etc                                     | negotiable                                                              | negotiable      | ,but adversarial ⊘;but adversarial                    |
| Sentence completion<br>" <b>To be or not to be</b> : " <b>?</b> | Prior data<br>+ conditional<br>probabilities              | Getting "correct" answer(s) is<br>negotiable for applications wo<br>qua |                 | <b>?</b> As a component,<br>would need top<br>quality |

# The power of context, and the use of DNNs

- Compare sentence prediction tasks:
  - 1. "... the Beatles song, All You Need is"?
  - 2. "... in Machine Translation, All You Need is" ?
- All you need is context
  - Context length measured in tokens: You say you want a revolution
  - To predict with a long context (1000s of tokens), train DNNs on statistics
  - DNNs can be trained to transform data
  - DNNs can both memorize and generalize context

# The power and pitfalls of repetition

- Answers to all "known" questions can be memorized
- Question-answering (and reasoning) abilities are hard to evaluate
  - Interpolation, extrapolation, pattern-matching composition, ... cover many more questions without reasoning
  - Example: Bounded-curriculum tasks passing SAT / GRE / GMAT tests

### Long contexts and broad scope complicate memorization

Compare application categories: AGI vs. customer support

### Randomized answers are important

• "Tell me the funniest joke"

## Pros and cons of errors, dangerous exponents

### 1. ML learns from data, with errors

- Easy interface, no need to specify correctness
- Doesn't promise 100% correctness
- Unlike in conventional SW Eng, prediction errors are inevitable

### 2. Large systems accumulate error probability, will hit some errors

- Long outputs, dialogues
- Numerous queries
- Chained components

# • For an application, look for error rates, error mitigation and error correction



### Background: how LLMs are trained

|                             | Self-supervised<br>learning             | Supervised<br>learning            |  |
|-----------------------------|-----------------------------------------|-----------------------------------|--|
| Input data                  | Unlabeled text (Web, etc)               | Prompt + response                 |  |
| Data<br>amount<br>& quality | >1T tokens,<br>lower quality            | 10K-100K pairs,<br>higher-quality |  |
| Tasks                       | Language modeling<br>Text completion    | Supervised fine-<br>tuning (SFT)  |  |
| Result                      | Pre-trained LLM                         | Tasked-tuned LM                   |  |
| Loss<br>functions           | Autoregressive loss (on unlabeled text) | Autoregressive<br>loss (on pairs) |  |

- At this point, LLMs
  - can generate many legitimate answers
  - some are helpful
  - some are safe
- Need to filter helpful & safe items
- Training on "correct" responses doesn't cut it

### Background: how LLMs are trained

|                             | Self-supervised<br>learning             | Supervised<br>learning            | Human Feedback (HF)                                                             | RLHF                            |
|-----------------------------|-----------------------------------------|-----------------------------------|---------------------------------------------------------------------------------|---------------------------------|
| Input data                  | Unlabeled text (Web, etc)               | Prompt + response                 | Prompt + responses                                                              | RM & prompts                    |
| Data<br>amount<br>& quality | >1T tokens,<br>lower quality            | 10K-100K pairs,<br>higher-quality | 100K-1M sets                                                                    | 10K-100K<br>prompts             |
| Tasks                       | Language modeling<br>Text completion    | Supervised fine-<br>tuning (SFT)  | Response ranking                                                                | Model-tuning to maximize scores |
| Result                      | Pre-trained LLM                         | Tasked-tuned LM                   | Reward model (RM)                                                               | Aligned LM                      |
| Loss<br>functions           | Autoregressive loss (on unlabeled text) | Autoregressive<br>loss (on pairs) | Rank violation, e.g.,<br>-log( $\sigma(r\theta(x,yc) - r\theta(x,yr) - m(r))$ ) | RM-based                        |

# AI Alignment to "human values", not to individual human abilities

- Alignment: the discipline, the process, and the result
- Example: OpenAl's plan for *alignment research* 
  - Train AI systems using human feedback
  - Train AI systems to assist human evaluation
  - Train AI systems to do alignment research
- Can AI alignment be pursued via response evaluation?
  - Broader: not only evaluation, **not read-only evaluation**
- **Societal values** can't be captured with current AI eval protocols that preserve evaluator state:
  - deliberation/discussion are needed to pass laws & regulations

### Prompt engineering

- GenAl can read your mind, but YMMV
- Prompt engineering
  - Clearly specify the task & PoV; the form, style, length of the answer, etc
  - Create application-specific templates for automation
  - Avoid pitfalls of a particular model (error mitigation)
- Recursive prompting as error-correction
  - Ask LLM how to improve a given prompt, improve it
  - Ask LLM to use the improved prompt
  - Ask how the answer can be improved
  - Ask to improve the answer, etc

# Current limitations & circumventing them

- Data and data types for foundational models
- Language vs thought
- Correctness and pattern-matching
- Hallucinations
- The need to augment foundational models
  - RW memory, arithmetic, and code execution
- Limitations of Alignment methods
- Common sense

# Data & data types for foundational models

Natural-language text **()** 

(自2. Code in various languages with sufficient training data

| <ul> <li>program code &amp; unit tests</li> </ul> | Limits for unsupervised learning                                                     |
|---------------------------------------------------|--------------------------------------------------------------------------------------|
| <ul> <li>vector graphics</li> </ul>               | <ul> <li>Global supply of public data</li> </ul>                                     |
| <ul> <li>Web site design</li> </ul>               | <ul> <li>Private and licenses data</li> </ul>                                        |
| <ul> <li>chip design</li> </ul>                   | <ul> <li>Newly generated data</li> </ul>                                             |
| • chess games                                     | <ul><li>Cross-modality knowledge distillation</li><li>Generating new data?</li></ul> |
| 個3. Images, photorealistic or not                 | Supervised tuning and feedback                                                       |
| /월4. Speech and audio                             | <ul> <li>Need a lot less data</li> </ul>                                             |
| ₩5. Video                                         | <ul><li>Some data can be generated</li><li>Some feedback can be automated</li></ul>  |
|                                                   |                                                                                      |

Computer Science > Computation and Language

#### arXiv:2301.06627 (cs)

[Submitted on 16 Jan 2023]

### Dissociating language and thought in large language models: a cognitive perspective

Kyle Mahowald, Anna A. Ivanova, Idan A. Blank, Nancy Kanwisher, Joshua B. Tenenbaum, Evelina Fedorenko

#### **Download PDF**

Today's large language models (LLMs) routinely generate coherent, grammatical and seemingly meaningful paragraphs of text. This achievement has led to speculation that these networks are -- or will soon become -- "thinking machines", capable of performing tasks that require abstract knowledge and reasoning. Here, we review the capabilities of LLMs by considering their performance on two different aspects of language use: 'formal linguistic competence', which includes knowledge of rules and patterns of a given language, and 'functional linguistic competence', a host of cognitive abilities required for language understanding and use in the real world.

#### arXiv:2302.00093 (cs)

#### [Submitted on 31 Jan 2023]

#### Large Language Models Can Be Easily Distracted by Irrelevant Context

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli, Denny Zhou

- Linguistic skills don't imply reasoning skills
- Shallow world knowledge

### Correctness and pattern-matching

- Checkable results (by humans or computers)
  - Narrow-scope applications vs. strategy applications
  - Great for test-taking, for producing code
- Can output mistakes be tolerated?
  - Consider legal constraints
  - Can't drive a car or perform brain surgery, but can produce art
- Match patterns in existing data vs. investigate/solve new challenges?
- Many applications where GenAl assists humans
  - Generate text from boilerplates
  - Summarize or evaluate documents
  - Help programmers write or debug code

### Hallucinations

 Definition: detailed, plausible parts of the response that are not in the prompt (extrapolated from the ML model), and cannot be considered valid/correct



\$

give me a bio for Igor L. Markov from University of Michigan

#### Partial fixes:

- look up facts
- symbolic reasoning
- numeric reasoning
- use multiple models
- hide uncertainty (remove details)
- expose uncertainty (blur details)
- .

Igor L. Markov is a Professor of Electrical Engineering and Computer Science at the University of Michigan. He received his Ph.D. in Computer Science from the University of California, Berkeley, and has been a faculty member at the University of Michigan since 200<del>5.</del>

Dr. Markov's research interests lie in the area of computer architecture and digital systems design, with a focus on energy efficient and reliable computing. He has made significant contributions to the field through his pioneering work on circuit reliability, low-power digital design, and emerging technologies for digital systems.

Throughout his care research, including t This is an old Chat-GPT response. Current response is correct but has fewer details.

#### Compare hallucinations to:



sought after as a sneaker and has delivered numerous invited talks at conferences and

## Augmentation: arithmetic ops, code execution

- Representing numbers by vectors and using DNNs for arithmetic ops is very inefficient
- "Long" numbers  $\rightarrow$  multiple tokens
  - <mark>3.</mark>141<mark>592</mark>6535...
  - Need algorithms for operations (can those be learned?)
  - Addition can be done in one backward pass, but not multiplication
- Model augmentation for numeric ops
  - To evaluate an arithmetic expression, issue an EVALUATE() command
  - This can be trained or pre/post-processed

### More general: augment LLM with a Python interpreter

### Augmentation: external RW memory

- Num learned parameters: billions to trillions (ROM)
- **Token I/O buffer**: 4Kt for GPT-3.5, 32Kt for GPT-4 \* log(num. tokens)=16bits
- Read-write memory:

I/O buffer tokens \* embedding dim \* num transformer layers

- Limited: data updates and new skills
- Hard to handle: input data with long-range dependencies, large hierarchies
- LangChain, AutoGPT: external memory management (files, RAM, etc)

# Limitations of Alignment methods

- Opinion: Autoregressive LLMs are inherently uncontrollable (too "greedy"): will hallucinate, be toxic...
  - Instead, *plan* answers to optimize safety and helpfulness

### Is RLHF sufficient to fix autoregressive LLMs?

- **1**. Individual people too limited (use help from computers)
- 2. HF protocols too limited, feedback may be contradictory

### 3. Value functions are too limited

- Packing too many concerns into f() may kill generalization
- Need a hierarchy of values

ChatGPT falsely accused a mayor of bribery when he was actually the whistleblower—now he wants to sue in what could be the first defamation case against a bot

SEARCH

A local mayor was surprised to learn that the bot said he served prison time. You would be too.

#### BY PRARTHANA PRAKASH April 05, 2023 4:28 PM EDT

**≡** FORTUNE

TECH · OPENAL

# Planning aside...

- Intuitive physics and common sense don't require planning
- Babies learn intuitive physics before languages (dogs only learn tokens)
  - Limited read-only memory, very limited I/O for supervision, few RL "trials"
  - Representative of domain-specific human learning - can't rely on LM

### LLMs have limited common sense

 Poorly calibrated output: too confident or refuse to answer

Bill Gates is a Maricopa County Supervisor. Does he know much about Microsoft?

Ø

I'm sorry, but the statement that Bill Gates is a Maricopa County Supervisor is incorrect. Bill Gates, co-founder of Microsoft Corporation, is not a government official or elected representative in any capacity, including Maricopa County Supervisor.

> To answer your question, however, if Bill Gates were to be a Maricopa County Supervisor, it is likely that he would still possess knowledge about Microsoft, as he has been associated with the company for many years and played a key role in its development. Nonetheless, it's important to

# What to expect of GenAI?

### Current LLMs

- Lack human reasoning skills, but develop properties at scale
- Won't catch up with top experts in **investigative tasks**
- Faster in **routine tasks**
- Great at handling style
- Great at translation tasks

### • For **creative tasks**, it depends

- how easy it is to be wrong
- how costly it is to be wrong

### Steve Pinker 1994:

- "the idea that thought is the same as language is ... a conventional absurdity"
- "the main lesson of 35 years of Al research is that the hard problems are easy and easy problems are hard"

#### $\exists r \times i V > cs > arXiv:2304.00612$

Computer Science > Computation and Language

[Submitted on 2 Apr 2023]

Eight Things to Know about Large Language Models

Samuel R. Bowman

# Conclusions

- Gen AI is developing quickly
  - Brings new opportunities for impact
  - Is a very structured field
  - Harbors many pitfalls
- Understanding limits is critical to moving ahead
  - Allay technology fears
  - Circumvent limits: augmented LLMs, verification, safety, composition