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2023: A wild rollercoaster of media coverage
• ChatGPT at 100M active monthly users
• Media: GenAI - a threat to Google search! 
• NYT: A Bing conversation goes off-rails
• “A threat to humankind!"
• Italy banned ChatGPT for GDPR violations
• Media: OpenAI losses widen to $540M
• Public APIs for app integration
• Media: GPT-4 quality and traffic dropped in May-June 
• Llama-2 OSSed, with weights, tuning & inference, free for commercial use 
• Tom Cruise negotiated AI use with movie studios before the SAG strike 

Credit: Wikipedia



Many open questions!

• Can you reliably tell AI outputs from human outputs?

• Can you ever trust AI outputs?

• Will AI destroy the humanity?

• What hype to avoid?

• What Gen AI framework to use?

• Which applications can be disrupted by GenAI?

To answer, study limitations and ways around them

Media: OpenAI Quietly Shuts Down
AI Text-Detection Tool Over Inaccuracies



Outline

• Basic concepts

• Limitations

• Ways to circumvent them

• Understanding limitations opens new possibilities



Predicting the near future for fun and profit
(tasks, techniques, quality, utility)

Monetizable?Error frequencyError  sizePredict based onImaginary prediction tasks

Too 
straightforward
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linear regression, 
flight plan, etc

Airplane’s position
in 5 mins

✅; but infeasiblenegotiableN/AXFair-coin toss outcome 🪙

commodity00Direct calculation, 
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Getting “correct” answer(s) is 
negotiable for applications

Prior data 
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probabilities

Sentence completion
“To be or not to be: “ ?



The power of context, and the use of DNNs

• Compare sentence prediction tasks:
1. ”… the Beatles song, All You Need is” ?

2. ”… in Machine Translation, All You Need is” ?

• All you need is context
• Context length measured in tokens: You say you want a revolution

• To predict with a long context  (1000s of tokens), train DNNs on statistics

• DNNs can be trained to transform data

• DNNs can both memorize and generalize context



The power and pitfalls of repetition

• Answers to all “known” questions can be memorized

• Question-answering (and reasoning) abilities are hard to evaluate
• Interpolation, extrapolation, pattern-matching composition, …

cover many more questions without reasoning
• Example: Bounded-curriculum tasks - passing SAT / GRE / GMAT tests

• Long contexts and broad scope complicate memorization
• Compare application categories: AGI vs. customer support

• Randomized answers are important
• “Tell me the funniest joke”



Pros and cons of errors, dangerous exponents

1. ML learns from data, with errors
• Easy interface, no need to specify correctness

• Doesn’t promise 100% correctness

• Unlike in conventional SW Eng, prediction errors are inevitable

2. Large systems accumulate error probability, will hit some errors
• Long outputs, dialogues

• Numerous queries

• Chained components

• For an application, look for error rates,
error mitigation and error correction



Background: how LLMs are trained
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• At this point, LLMs
• can generate many 

legitimate answers
• some are helpful
• some are safe

• Need to filter helpful & safe items

• Training on “correct” responses 
doesn’t cut it



Background: how LLMs are trained
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AI Alignment to “human values”, 
not to individual human abilities
• Alignment: the discipline, the process, and the result
• Example: OpenAI’s plan for alignment research

• Train AI systems using human feedback
• Train AI systems to assist human evaluation
• Train AI systems to do alignment research

• Can AI alignment be pursued via response evaluation?
• Broader: not only evaluation, not read-only evaluation

• Societal values can’t be captured with current AI eval protocols
 that preserve evaluator state: 

• deliberation/discussion are needed to pass laws & regulations



Prompt engineering

• GenAI can read your mind, but YMMV

• Prompt engineering
• Clearly specify the task & PoV; the form, style, length of the answer, etc
• Create application-specific templates for automation
• Avoid pitfalls of a particular model (error mitigation)

• Recursive prompting as error-correction
• Ask LLM how to improve a given prompt, improve it
• Ask LLM to use the improved prompt
• Ask how the answer can be improved
• Ask to improve the answer, etc



Current limitations & circumventing them

• Data and data types for foundational models

• Language vs thought

• Correctness and pattern-matching

• Hallucinations

• The need to augment foundational models
• RW memory, arithmetic, and code execution

• Limitations of Alignment methods

• Common sense



Data & data types for foundational models
1. Natural-language text

2. Code in various languages with sufficient training data
• program code & unit tests
• vector graphics
• Web site design
• chip design
• chess games

3. Images, photorealistic or not

4. Speech and audio

5. Video

Limits for unsupervised learning
• Global supply of public data
• Private and licenses data
• Newly generated data
• Cross-modality knowledge distillation
• Generating new data?

Supervised tuning and feedback
• Need a lot less data
• Some data can be generated
• Some feedback can be automated

👍

👍

👍

🤔

🏋



• Linguistic skills don’t imply 
reasoning skills

• Shallow world knowledge



Correctness and pattern-matching
• Checkable results (by humans or computers)

• Narrow-scope applications vs. strategy applications
• Great for test-taking, for producing code

• Can output mistakes be tolerated? 
• Consider legal constraints
• Can’t drive a car or perform brain surgery, but can produce art

• Match patterns in existing data vs. investigate/solve new challenges?

Many applications where GenAI assists humans
• Generate text from boilerplates
• Summarize or evaluate documents
• Help programmers write or debug code



Partial fixes:
• look up facts
• symbolic reasoning
• numeric reasoning
• use multiple models
• hide uncertainty

(remove details)
• expose uncertainty

(blur details)
• …

Hallucinations
• Definition: detailed, plausible parts of the response that are

not in the prompt (extrapolated from the ML model),
and cannot be considered valid/correct

Compare hallucinations to:

This is an old Chat-GPT response. Current 
response is correct but has fewer details.



Augmentation: arithmetic ops, code execution
• Representing numbers by vectors and using

DNNs for arithmetic ops is very inefficient

• “Long” numbers multiple tokens
• Need algorithms for operations (can those be learned?)

• Addition can be done in one backward pass, but not multiplication

• Model augmentation for numeric ops
• To evaluate an arithmetic expression, issue an EVALUATE() command

• This can be trained or pre/post-processed

• More general: augment LLM with a Python interpreter

3.1415926535…



Augmentation: external RW memory
• Num learned parameters: billions to trillions (ROM)

• Token I/O buffer: 4Kt for GPT-3.5,  
32Kt for GPT-4 * log(num. tokens)=16bits

• Read-write memory: 
I/O buffer tokens * embedding dim * num transformer layers

• Limited: data updates and new skills

• Hard to handle: input data with long-range dependencies, large hierarchies

• LangChain, AutoGPT: external memory management 
(files, RAM, etc)



Limitations of Alignment methods

• Opinion: Autoregressive LLMs are inherently uncontrollable
(too “greedy”): will hallucinate, be toxic…

• Instead, plan answers to optimize safety and helpfulness

• Is RLHF sufficient to fix autoregressive LLMs?
1. Individual people too limited (use help from computers)

2. HF protocols too limited, feedback may be contradictory

3. Value functions are too limited
• Packing too many concerns into f() may kill generalization

• Need a hierarchy of values



Planning aside…
• Intuitive physics and common sense 

don’t require planning

• Babies learn intuitive physics before 
languages (dogs only learn tokens)

• Limited read-only memory, very limited 
I/O for supervision, few RL “trials”

• Representative of domain-specific 
human learning  - can’t rely on LM

• LLMs have limited common sense
• Poorly calibrated output: 

too confident or refuse to answer



• Steve Pinker 1994:
• “the idea that thought is the same as 

language is … a conventional absurdity”

• “the main lesson of 35 years of AI 
research is that the hard problems
are easy and easy problems are hard”

What to expect of GenAI?

• Current LLMs
• Lack human reasoning skills, 

but develop properties at scale
• Won’t catch up with top experts

in investigative tasks
• Faster in routine tasks
• Great at handling style
• Great at translation tasks

• For creative tasks, it depends
• how easy it is to be wrong
• how costly it is to be wrong 



Conclusions

• Gen AI is developing quickly
• Brings new opportunities for impact

• Is a very structured field

• Harbors many pitfalls

• Understanding limits is critical to moving ahead
• Allay technology fears

• Circumvent limits: augmented LLMs, verification, safety, composition


