
Solving multi-tenancy in vector 
search requires a paradigm shift
The AI Conference, Sep 26th, 2023 

Etienne Dilocker
Co-Founder & CTO



Multi-Tenancy!?

Why should we care?



Imagine an app that lets you upload all 
the files on your hard drive and chat 
with it.

You wouldn’t want someone else
to chat with your files.



As the vendor of this chatbot app: 

Why should you pay for all your 
potential users if only 5% are active 
right now?

Previous multi-tenancy solutions
made you pay for all, not for active
tenants.



Prioritization is hard.

But sometimes it’s obvious
what you need to do.



Commercial Customers:

● “We need strong isolation 
between tenants for 
security and compliance 
(GDPR, etc.)”

● “We need to reduce cost.”



Engineers:

● “We need to add 
hundreds of thousands 
of tenants and there is no 
solution that can do this 
right now.”



Open-Source Community:

“I’m using workarounds with 
Weaviate and other vector DBs 
and they have limitations.

Can you address the root 
cause?”



Why existing solutions failed



Attempt 
Number 1

The Filter

SELECT AWESOMENESS
FROM VECTORDB
WHERE TENANT_ID=12345



Why is single index with filters not ideal?

No isolation

Inefficient

Difficult to scale dynamically

Very expensive off-boarding
(tenant deletion)



Attempt 
Number 2

Create one collection 
per tenant

(The recommended way in 
Weaviate in the past)

👍



Solves some of the previous shortcomings

Strict isolation

No filter necessary

Good scalability

Easy off-boarding



Strict isolation

No filter necessary

(In theory) Good scalability 

Easy off-boarding

Solves some of the previous shortcomings



Does not scale to millions of tenants

👍 data scheduling 
scales well

👎 schema does 
not

Lots of duplication

Terrible MTTR

But isn’t the right solution either



How can we make this better?

Let’s make tenants first-class citizens!



Design goals

Millions of tenants 
in a single cluster

Strict separation 
for GDPR etc

Linear scalability
Want more tenants?
Add more nodes!

Simple offboarding

Resource isolation

Only pay for active tenants



Sharding would likely 
play a key role.



Sharding in a single-tenancy situation

Consistent
Hashing Ring

Shard A

Shard B

Node 1

Shard C

Shard D

Node 2

Shard E

Shard F

Node 3



What if we took this to the 
extreme and created a single 
shard per tenant?



Pros

Strict Isolation
separate storage, separate indexes, resource isolation

Schema is defined just once
All shards already belong to the same collection

Cheap and easy tenant offboardings
Deleting a tenant is deleting an entire shard (cheap)



Potential Cons

Ring-hashing no longer fits 
It’s meant to distribute many keys to fewer shards

Potential for exploding cost
What is the cost of an empty shard?

What if you have thousands or millions of them?

Performance Degradation





runtime: program exceeds 10000-thread limit
fatal error: thread exhaustion

5000 shards
Does it run at all?



28GB for 5,000 
shards 😱
5.6MB per shard

1M shards → 
5.6TB 😅

How expensive 
would it be?

https://emojipedia.org/face-screaming-in-fear




Would 
performance 
degrade?

Creating shards in 
batches of 25



Workarounds don’t scale.
These are all addressable problems, but it shows 
you need an actual Multi-Tenancy solution.



Weaviate 1.19 introduces
Native Multi-Tenancy Support



Simple API

Specify the 
tenant with 
each request.

That’s it.



Simple API

Specify the 
tenant with 
each request.

That’s it.



Simple API

Specify the 
tenant with 
each request.

That’s it.



Shard routing is a simple (replicated) lookup list

Tenant A

Tenant C

Node 1

Tenant B

Tenant D

Tenant E

Tenant G

Node 2

Tenant F

Tenant H

Tenant I

Tenant K

Node 3

Tenant J

Tenant L

…
Tenant C → Node 1
Tenant D → Node 1
Tenant E → Node 2
Tenant F → Node 2
… 



870MB for 
5,000 shards

174KB per shard

1M shards -> 
174GB 





Performance no 
longer 
degrades when 
adding tenants.
Creating shards 
in batches of 25

Chart uses an identical scale to the previous one (0<x<2000)



Automatic Multi-Tenancy Load test (Importing)



Automatic Multi-Tenancy Load test (Querying)



How can Multi-Tenancy
reduce cost?



Storage Tiers and their cost

$$$ Memory
very fast, but very expensive

Cloud Storage
cheap, but slow

SSD Drives
medium speed, medium cost

$ slow

fast



Activating and Deactivating Tenants

Active Tenants
are already in memory 
and ready to go

Inactive Tenants
are on disk, but can be loaded 
in a few hundred ms



If 20% of tenants are active at any given time…

$$



If 20% of tenants are active at any given time…

$

That’s an 80% memory reduction.



Separation of 
Storage & Compute



Cloud-Storage-based Architecture

Tenant I

Tenant K

Tenant J

Tenant L
A

C

B

D

Tenant E

Tenant F
Ingest into 

Cloud Storage
Temporary Lease 

while tenant is active

Stateless 
Ingestor

Cloud 
Storage

Stateless Server 
with local SSD Cache



Recap



Most RAG and search apps require multi-tenancy.

Multi-Tenancy is hard and relying on workaround fails at 
scale.

There are a lot of new opportunities that couldn’t be solved 
before: Cost reduction, stateless vector dbs, etc.

With a dedicated Multi-Tenancy solution we can handle the 
scale and serve tenants efficiently.



Thank you



Connect with us!

weaviate.io

weaviate/weaviate

@etiennedi
@weaviate_io


