
6 Hard Parts of Vector
Search at Scale
Ari Ekmekji
Rockset

Agenda

1. Intros

2. 6 Hard Parts Of Vector Search At Scale

3. Real World Solutions

4. Q&A

2

Intros

About me

Senior Engineering Manager @ Rockset (2019-Present)

● Built Converged Index and query execution engine

● Lead platform org– controlplane and ingestion

Engineering Lead @ Focal Systems (2016 - 2019)

● Data and ML infra for deep learning computer vision

Software Engineer @ Facebook (2015)

● RocksDB team, optimizing LSM compaction

About vectors
● Given unstructured data.

○ e.g. images, movies, users

● …project/embed them into a vector space.

● …that preserves some semantic relationship
(“likeness”) we care about.

55

6 Hard Parts

6 Hard Parts of Vector Search at Scale

1. Vector search ≠ vector database

2. Incremental indexing of vectors

3. Data latency for vectors and metadata

4. Metadata filtering

5. Filter selectivity estimation

6. Contention between indexing and vector search

Vector search ≠ vector database
Hard problem #1

● Vector DATABASES solve many, many more
“database” problems than “vector” problems

● Beware of homegrown “vector search infra”.
○ You can download HNSW, FAISS, etc. for

prototyping.
○ Productionizing them will result in accidentally

inventing a database.

Atomicity

Transactions

Consistency

Indexes

Query Optimization

Ingestion Engine

Durability

“Database” problems

Backups

Access Controls

Multi-tenancy

Scaling

Sharding

MVCC

…

Incremental indexing of vectors

● What happens when I add new
vectors?

● Index is increasingly out of date.

● Naively updating is inefficient
and suboptimal.

● Periodic full rebuilds are slow
and resource intensive.

Hard problem #2

[......]
[......]
[......]
[......]

[......]
[......]
[......]
[......]
[......]
[......]
[......]
[......]
[......]
[......]

[......]

Strategies for incremental indexing of vectors

● Embrace suboptimal incremental updates.

● Embrace batch index.

○ Multiple indexes, making new ones as you go.

○ Occasionally “compact” them.

● Improve the core algorithms.

○ Lessen penalty for incremental updates

○ (and then publish it)

Data latency for vectors and metadata

● How long after you “create” a vector do you need it to be
searchable in your index?

● Understand tolerance for data latency.
○ Both for the vector AND its metadata

● Streaming vectors is requires different architecture than batch.

● Beware propagation delays with replicated storage.

Hard problem #3

Metadata filtering
Hard problem #4

● The WHERE clause

● “show me all the images like this one…”

○ “… that were uploaded in the last 10 minutes.”

● “show me all the streams I might like…”

○ “… where the user is online now.”

What makes metadata filtering hard

● Index is precomputed.

○ You don’t have an index of the _filtered_ data.

● Many choices…

○ Post-filter. Overfetch vectors, then filter.

○ Pre-filter. Filter first, then scan.

○ Single-stage filter. Merge the filtering + ANN search
algorithms.

Filter selectivity estimation

“Give me 5 nearest neighbors where <filter>”.

● Filter can be arbitrary expression.

● Different predicates. Different selectivities.

○ Predicates based on user behavior

● Reordering? Planning? Optimizing?

● Running filters fast is a very well studied and hard problem.

● Cost-based query optimizer.

Hard problem #5

Contention between indexing and querying
Hard problem #6

Ingestion and
indexing

Search queries

Cluster

Contention between indexing and querying

● “Simple” case, 2 way contention between indexing and queries

● Harder cases at scale, contention between:

○ Multiple (e.g. batch vs streaming) ingestion workloads

○ Multiple applications’ query workloads

○ Single application’s queries as qps spikes

○ Background jobs (e.g. index build) and everything

6 Hard Parts of Vector Search at Scale

1. Vector search ≠ vector database
2. Incremental indexing of vectors
3. Data latency for vectors and metadata
4. Metadata filtering
5. Filter selectivity estimation
6. Contention between indexing and vector search

Real World Solutions
@ Rockset

Solving Metadata Filtering in Rockset

1. Create FAISS IVF index and store
centroid identifiers in memory

2. With each new record, compute
and store centroid and residual

centroid residual name age location embedding

1 10.36 Edwin Jarvis 49 Malibu [......]

1 4.53 Lara Morton 46 San Francisco [.....]

3 2.13 Marvin Adams 23 London [.....]

Centroid Probe

Cell

Solving Metadata Filtering in Rockset

3. At query time, Rockset’s query optimizer asks FAISS for the
closest centroids to the target embedding:

SELECT name, age
WHERE location = ‘Los Angeles’
FROM users
ORDER BY APPROX_DOT_PRODUCT(embedding, :target) DESC
LIMIT 5

Solving Metadata Filtering in Rockset

4. FAISS returns 3 centroids. Rockset now rewrites the query as:

SELECT name, age
WHERE location = ‘Los Angeles’
 AND centroid IN (2, 4, 1000)
FROM users
ORDER BY residual DESC
LIMIT 5

5. Rockset’s execution engine uses the inverted index to
perform single stage filtering.

Solving Data Latency In Rockset

● Rockset uses RocksDB as the storage engine
○ LSM engine, write optimized
○ Shred documents into KV pairs

● Rockset is mutable at the individual field level

● New records are queryable within ~100ms
○ Including updates and deletes!

● Inline generation of centroids and residuals by FAISS

● *Still need to retrain index periodically to keep recall high

Shared
hot storage

Solving Resource Contention In Rockset

Data stream App
Compute/Storage and
Compute/Compute Separation

1. Compaction only on primary
compute nodes (VI).

2. Replicate the memtable to send
(physical) changes.

3. Applying physical memtable
updates takes 10x less CPU.

4. Queries access the latest
updates from the memtable.

5. Scale up/down on demand
without storage duplication.

SSD

Optional
Query

Write
Ahead

Log
Query

App

Memtable Memtable

1

2
3

5

Co
m

pu
te

 n
od

es

Co
m

pu
te

 n
od

es

Questions?
Contact me: ari@rockset.com

rockset.com/index-conf

