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Overview

Pinterest and Ads @ Pinterest

How Conversion Optimization Works?

Unique Challenges to Conversion Optimization

Brief History of the Conversion Ranking Model

Privacy Landscape Changes and its impact to Ads Personalization

Deep Dive into some Industry Standard Solution to Enhance Personalization
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Ads @ Pinterest
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How Does the Conversion Pipeline Work

4. Ad Engagement 5. Ad Conversion
2. Early Prediction
) A
Conversion
Model
- B

1.Ad Created

3. Ad Served

— 5

6. Ad Measurement
@ (Ingestion -> User
7. Training Data & Match ->

Features Attribution)



Conversion Optimization Campaign

e Conversion Event Type
o Event that happens on advertiser website/app
m Reported via a Pinterest Tag or API
o Checkout, Signup, Add to cart, Lead (supported for optimization)
o Page Visit, Search, Video View (reported, used in features)

e Attribution Window
o Time during which the platform can take credit for a conversion
o E.g.7/7/1 window - Pinterest gets credit for any conversion on any device that
happens up to
m 7/ days after a click
m 7/ days after a save
m 1 day after a view
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Challenges Unigue to Conversion Modeling

Data quality

e Controlled by advertisers

e Inaccurate labels and abnormal conversion
volume (over-report or under-report)

e User Match is stochastic

Data volume and label sparsity
e Extra constraints on model complexity

e Slower iteration on experiment '

Delayed feedback
e (Comes from the nature of the attribution window
e Frequency of model update vs. false negative
e Model calibration




Data Quality based on Downstream Application

e For Example: An Auto-Manufacturer is sending Page-visits as Checkouts

o Reporting/Ads Manager: Want to Report as Advertiser expects to see events they

send

o Model Training:
m Can Potentially Filter Events if impacts overall performance

m Handle through ID Features usage in the model

o Internal Metrics Reporting

m Filter such events as they might be outliers



Handling Data volume and Label Sparsity

e Enhance data
o Multi-task multi-tower: leverage rich dataset from other offsite and

onsite tasks

e Improve model efficiency given the limited data volume
o Efficient architectures: such as feature crossing
o Efficient features: better user feature embeddings, and interaction

features
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https://medium.com/pinterest-engineering/how-we-use-automl-multi-task-learning-and-multi-tower-models-for-pinterest-ads-db966c3dc99e
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How we use AutoML., Multi-task learning and Multi-tower models for Pinterest Ads

Pinterest’s AutoML

Representation layer

o Squashing, clipping, hashing projection,
normalization, automate feature
transformation

Summarization layer

o Grouping, learn common embedding
(category vector for user and pin)

Latent cross layer

o Multiplicative layer, high degree
interactions, force “explicit” feature
crossing, (could be DCNv2, low rank
DCNV2, Masknet)

Fully connected layers

o Classic deep neural network


https://medium.com/pinterest-engineering/how-we-use-automl-multi-task-learning-and-multi-tower-models-for-pinterest-ads-db966c3dc99e
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Privacy Changes: More Power To Users to choose how the
data is shared
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Conversion Optimization: Landscape Changes

4. Ad Engagement 5. Ad Conversion
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Major Impact to Conversion

Predictions

Users with Visibility

Users without Visibility \ﬁ

Training Data

Offsite Featurization

Ads Serving

User Matching

Experiment Analysis/Reporting Impacted
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Auxiliary Head:

Auxiliary Head: Auxiliary Head: Serving Head: Serving Head: Auxiliary Head: P(View AddtoCart/No
p(Click) p(Good-Click/Click) p(Click-Checkout/Click) P(View-Checkout/No-Click)  P(Click-AddToCart/Click) Click)
‘ ‘ \lck AddToCai iew- AddToCa
FC Layer FC Layer FC Layer FC Layer FC Layer FC Layer
Fully Connected Layers

T

Latent Cross Layer

Embedding Table, Continuous Normalization, Batch Norm

Input Data

Multi-Task Learning

Enrich Data

o Enrich the training data, warm up
embedding from rich onsite signals

Auxiliary Heads for Training

o Learn more efficiently with other actions
as auxiliary head

m Like Good-Clicks, AddToCart
Easier to Maintain

o Reduce number of models to maintain
from 10+ to 3

Reduced Serving Infrastructure Costs

o Single Model inference can give multiple
predictions




Crossing Architecture
Improvements & Other
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Personalization doesn’t have to come at the expense
of privacy

Content

Businesses




Privacy Landscape Changes Types

i0S14+ Apple
Broad Prompts
California
Consumer Privacy

e Sparser and Noisy Datasets
3rd Party Data e Act (CCPA): e e Data Domain Shifts between training

Applicable in
California
AdChoices Opt-Out
DNT (Do Not Track)
Others

and serving

Usage Opt-Out

Changes Impact



Privacy Landscape Changes Types

.. . Limited Feature to Learn from
Ui e L Feature Distribution Shifts impacting

Featurization (DSA) model calibration

Impact Fair Lending Act Require monitoring for compliance

Control how . for feature handling
features are being

computed

Changes Impact



Identification
Headwinds

Privacy Landscape Changes Types

=

Safari, Chrome and other
browsers are actively

working to remove °
identifiers used for ad e
[ J

tracking (like 3rd party
cookie, IP address) and
propose new privacy safe
solutions

Changes

Deterioritiating Data Quality: Inability
to match to the right user

A/B experimentation impacted due to
noise

Impact



New Browser
Based
Measurement
Solutions

Privacy Landscape Changes Types

=

Google’s Privacy Sandbox:
Limit tracking of

individuals and provide e
safer alternatives to

existing technology on

these platforms

Changes

Noisier Labels

Different Label Distribution
Less Granular

Aggregated Data

Impact



Data Deletion
Requirements

Privacy Landscape Changes Types

=

Flexibility to allow
data from the
system to be
deleted (user
and/or advertiser)

Changes

Perform deletion in scalable manner
Monitoring and Data Flow
Requirements

Model Unlearning

Investment Directions



Industry Standard Investments

e Architectures and Algorithms resilient w.r.t training with
Sparse and Noisy Datasets
Handling Data Domain Shifts between training and serving
Training on encrypted data and aggregated datasets

Algorithmic Advancements

e Privacy Restrictions are tiered depending on use case

Data Storage and Privacy o  Data Flow Monitoring and Alerting of any misuse

Safe Handling e Access Restrictions enforcement on Use-Case level

o  Columnar vs File Storage Level

e  Secure Multi-Party Computation:

o  Share data safely between two parties without divulging
private data

Secure Data Sharing Clean ROoms

o  Neutral party for doing Ads Measurement and Attribution

e API Conversions: Server to Server

e On Device Learning
e Federated Learning

Infrastructural Changes




Industry Standard Approaches for Better Models

Learn Better from First Party
Onsite User Data

Learning from Unlabeled Data

Learning with Sparse Data

Handling Bias Between
Different Population

Post Click Feature Distillation
Onsite Auxiliary Labels
Onsite Feature Engineering

Pseudo Labeling
Semi-Supervised Learning

Ensemble Technique
Data Augmentation

Reweight/Resample
Domain Adaptation Techniques



Introducing
Privacy by Default:
K-Anonymity

A dataset provides k-anonymity
protection if the information
contained for each person
contained in the dataset cannot be
distinguished from at least k-1
other individuals whose information
also appears in the dataset

Name

AB

BC

DE

CD

Gender | Age

23

25

40

41

Zip

121*

121*

123*

123*

Label

Example: Original Data

Gender

Age

[20-25]
[20-25]
[30-50]

[30-50]

Zip

121*

121*

123*

123*

Label

K=2 Anonymous Data



Introducing @: @x

Privacy by Default: Dataset D with Dataset D’

your data without your data

Differential Privacy ) /

)(‘)/\JS
831 L3

Strong, mathematical definition of

privacy in the context of statistical Algorithm A

analysis and machine learning.

DP guarantees that inferences are
indistinguishable whether or not a single [ Output A(D) J [ Output A(D’) ]

individual’s private information was
or was not in the analysis input. \/

-—
*=== | Similar outputs




Introducing
Privacy by Default:
Differential Privacy

Individually identifiable
user data

Noise

DP uses randomization (injecting
noise) to prevent privacy attacks.
The noise level of DP is

computed based on the privacy
budget (epsilon) we have. Larger @E pE— Q’ <y

epsilon means we have more

privacy budget.

DP is robust to cumulative risk

from successive data releases UL A0 )

Privacy-safe ads model model training techniques




Thanks for XFN collaboration with entire
Ads Quality, Ads Infra, Ads

AC kn oW I ed g eme nt Measurement, Advanced Technology

Group, Advertiser Solution Group,
Content and User Engineering teams
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Post Click Featurization as Synthetic Data Generator

Conversion
Label.
Features before Ad Features after Ad
Impression (Servable Impression (Privileged
Features) Features, like click, save,

| hide, time-spend)
I

Teacher/Offline Model l .

for Predicting
Conversions

Observed Labels



Post Click Featurization as Synthetic Data Generator

A A A AA

©©®

Features before Ad
Impression (Servable
Features)

Features after Ad
Impression (Privileged
Features, like click, save,
hide, time-spend)

Y

Model Inference

Unobserved
Label

Inferred Label



Industry Standard
ways to Improve
Personalization

Post-Click Distillation as
Synthetic Label Generator
Domain Adaptation Application to
reduce bias between training and
serving population

Ensemble Models to Improve
Robustness

Adding Differential Privacy by
Default

Reference: Domain-Adversarial Training of
Neural Networks
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